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ABSTRACT 

Land cover maps provide critical insights for a variety of applications, including monitoring natural 
disasters and hazards, assessing climate change impacts, and forecasting future environmental 
conditions. The accuracy of these maps significantly depends on the quality of the training data used in 
their generation. In addition, generating validation data is essential for creating land cover classification 
maps to demonstrate the accuracy of the maps. However, acquiring high-quality training and validation 
data is time and labor intensive as well as presents potential for error in data collection, interpretation, 
and ground surveys. This study introduces a novel training and validation data refinement method 
employing the directional neighborhood rough set approach to address these challenges. We applied this 
refinement method to training and validation data for land cover classification using Landsat-8 and 
FLC1 datasets. The results demonstrate that the proposed method effectively identifies reliable training 
and validation data, thereby enhancing the quality of land cover maps and providing the assessment 
method with several confidence levels depending on the purposes. 

Keywords:  Class Boundary, Directional Neighborhood Rough Set, Land Cover Classification, 
Training Data, Validation Data 

 

1. INTRODUCTION 

Land cover maps are utilized for a variety of 
applications, including urban and regional 
planning, evaluation of environmental 

vulnerability and impact, and monitoring of 
natural disasters and hazards (Talukdar et al., 
2020). Land cover classification is predominantly 
performed through machine learning techniques, 
which are bifurcated into supervised and 
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unsupervised learning. Supervised learning 
boasts the capability to classify images with high 
precision, aligning with specific objectives. 
However, the creation of training data for 
supervised learning takes time and effort. 
Conversely, unsupervised learning, while being 
more economical and quicker because of 
unnecessary training data preparation, often 
struggles with achieving the desired classification 
accuracy, resulting in maps of relatively lower 
quality. As a result of the emphasis on accuracy 
over convenience, supervised classifiers have 
emerged as the preferred tools for land cover 
classification (Sheykhmousa et al., 2020). 

Despite these advancements, the cost 
associated with producing training data is an issue 
that cannot be overlooked. Several strategies have 
been explored to reduce these costs. For example, 
polygon-based training data rather than pixel-
based data has been proposed, although this 
approach suffers from a lack of spatial and 
feature-specific representativity (Stehman, 2009). 
Alternatively, utilizing existing maps or results 
from unsupervised classifications as training data 
has been suggested as a means to significantly cut 
down the costs involved in training data 
production. However, this method could 
propagate errors from the original or 
unsupervised maps into the newly generated map. 
Notably, Foody and Arora have demonstrated that 
the choice of training data exerts a more 
significant impact on the classification results 
compared to the differences among classifiers 
(Foody and Arora, 1997). 

Recent advancements have introduced various 
methodologies to filter out erroneous training 
data or to identify and utilize reliable training data, 
aiming to enhance the accuracy of land cover 

maps. Kavzoglu utilized visual analyses to 
examine the distribution of training data across 
subspaces and histograms for each class, 
demonstrating how the exclusion of outlier 
samples based on these analyses could 
significantly improve the performance of neural 
network classifications (Kavzoglu, 2009). 
Radoux et al. proposed two automated methods 
for extracting training data from existing land 
cover maps focusing on global land cover map: 
the multiclass border reduction filter, which 
identifies class boundaries on the map, and a 
spectral filtering technique commonly employed 
in change detection to remove outliers from the 
spectral signature distribution (Radoux et al., 
2014). Paris and Bruzzone introduced a method 
that utilizes Gaussian distributions to extract 
reliable training data from thematic products 
(Paris and Bruzzone, 2021). Bratic et al. 
suggested extracting dependable training data 
through the intersection of multiple maps (Bratic 
et al., 2023). 

In addition, the creation of validation data is 
essential for creating land cover classification 
maps to demonstrate the accuracy of the maps. 
The creation of validation data is as costly as the 
creation of training data. In some cases, existing 
land cover classification maps can be used as a 
substitute for the validation data. Therefore, 
quality assurance is required for both the training 
and validation data. 

This study proposes an alternative perspective 
to the conventional methodologies for extracting 
reliable training and validation data. It explores 
the application of rough set theory, which 
includes the concept of certainty approximation 
sets deemed apt for identifying dependable 
training and validation data. Originally, the 
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classical rough set theory was introduced by 
Pawlak in 1982, aiming to derive features and 
rules from data that may be ambiguous or 
incomplete (Pawlak, 1982). Rough set theory has 
since been extended and adapted across various 
domains, demonstrating its applicability to a wide 
range of fields. Several studies have employed 
extended rough set theories as land cover 
classifiers (Pan et al., 2010; Ishii et al., 2021). 
Among these classifiers, the grade-added rough 
set (GRS) possesses datasets featuring numerical 
explanatory variables and categorical objective 
variables, offering the advantage of minimizing 
information loss in comparison to methods 
requiring discretization (Ishii et al., 2021). 
Subsequently, the directional neighborhood 
rough set (DNRS) was introduced as a 
generalization of GRS, providing a more rigorous 
mathematical framework and addressing 
limitations inherent to GRS (Ishii et al., 2022). 
However, the applicability and effectiveness in 
the field of remote sensing remain to be validated. 

In this study, an innovative method for refining 
training and validation data is proposed to 
enhance the accuracy of land cover maps and to 
assess the accuracy with precision, utilizing the 
lower approximation concept within the DNRS 
framework. DNRS exhibits a limitation with 
increasing dimensionality, often resulting in a 
conservative lower approximation. To address 
this issue, the "degree of certainty" within the 
lower approximation set is refined, applying this 
comprehensive DNRS approach to identify and 
extract the most effective training data for land 
cover classification and to assess the accuracy 
using reliable validation data. 

2. EXTENSION OF CURRENT 
APPROACH 

2.1 DNRS Approach 

The basic DNRS approach (Ishii et al., 2022) 
is described in this section as a foundation for the 
new concept in DNRS introduced in section 2.2. 

𝐷𝑇 =< 𝑈, 𝐴, 𝑉, 𝜌 > is a decision table, where 
𝑈  is a nonempty finite set of m objects 
{𝑥!, 𝑥", ⋯ , 𝑥#};  𝐴 = {𝑎!, 𝑎", ⋯ , 𝑎$}  is a 
nonempty finite set of n attributes; and 𝑉 =
∪%∈' 𝑉% , where 𝑉%  is the domain of attribute 
𝑎 ∈ 𝐴.  𝐴 = 𝐶 ∪ 𝐷  consists of a condition 
attribute set 𝐶  and a decision attribute set 𝐷 . 
𝜌: 𝑈 × 𝐴 → 𝑉  is an information function that 
allocates attribute value 𝜌(𝑥, 𝑎) ∈ 𝑉  to an 
object 𝑥 ∈ 𝑈  and an attribute 𝑎 ∈ 𝐴.  The 
datasets addressed in this study have numerical 
values for condition attributes and categorical 
values for the decision attribute. The condition 
attributes 𝜌(𝑥( , 𝑎) is the degree of association an 
object 𝑥(  has with attribute 𝑎,  defined as 
follows: 

𝑔(𝑥( , 𝑎) =
)(+!,%)./01"∈$

{)(+,%)}

/45
"∈$

{)(+,%)}./01
"∈$

{)(+,%)}
,  (1) 

where 𝑔(𝑥( , 𝑎	) ∈ [0,1]. The difference of grade 
is as follows: 

𝑑𝑖𝑓𝑓(𝑥, 𝑦, 𝑎) = 𝑔(𝑥, 𝑎) − 𝑔(𝑦, 𝑎).  (2) 

Furthermore, the n-dimensional vectors and 
difference of grade are expressed as follows: 

𝒈(𝑥) ≡ G𝑔(𝑥, 𝑎!), 𝑔(𝑥, 𝑎"),⋯ , 𝑔(𝑥, 𝑎$)H. (3) 

𝒅𝒊𝒇𝒇(𝑥, 𝑦) ≡
G𝑑𝑖𝑓𝑓(𝑥, 𝑦, 𝑎!), 𝑑𝑖𝑓𝑓(𝑥, 𝑦, 𝑎"),⋯ , 𝑑𝑖𝑓𝑓(𝑥, 𝑦, 𝑎$)H.
     (4) 

To define a fundamental set (granule 
information), half-space and neighborhood sets 
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are introduced. Initially, the i-th hyperplane in 
real n-space ℝ  is defined using 𝑥, 𝑦 ∈ ℝ$  as 
follows: 

𝐻(G𝜺( , 𝒈(𝑥)H =
{𝒈(𝑦) ∈ ℝ$|𝜺( ∙ 𝒈(𝑦) = 𝜺( ∙ 𝒈(𝑥)}, (5) 

where we assume that the j-th component of 
vector 𝜺(  on the real n-dimensional space 
satisfies the following definition: 

𝜀(6 = R1	𝑖 = 𝑗
0	𝑖 ≠ 𝑗, 

where i and j are the subscripts indicating the 
number of dimensions. The real n-dimensional 
space can be divided into 2$ regions using the n 
hyper plane defined by (5). To define such regions, 
the upper and lower half-spaces are defined as 
follows: 

𝐻(7G𝜺( , 𝒈(𝑥)H
= {𝒈(𝑦) ∈ ℝ$|𝜺( ∙ 𝒈(𝑦) ≥ 𝜺( ∙ 𝒈(𝑥)} 

= {𝒈(𝑦) ∈ ℝ$|𝜺( ∙ 𝒅𝒊𝒇𝒇(𝑦, 𝑥) ≥ 0}, (6) 

𝐻(.G𝜺( , 𝒈(𝑥)H =
{𝒈(𝑦) ∈ ℝ$|𝜺( ∙ 𝒈(𝑦) ≤ 𝜺( ∙ 𝒈(𝑥)} =
{𝒈(𝑦) ∈ ℝ$|𝜺( ∙ 𝒅𝒊𝒇𝒇(𝑦, 𝑥) ≤ 0}.  (7)	
One of 2^n quadrants created by n hyper planes 
about object x in (6) and (7) can be expressed as 

𝑄89 (𝑥) = Y𝑦 ∈ 𝑈Z𝑦 ∈∩(∈8 𝐻(∗G𝜺( , 𝒈(𝑥)H\, (8) 

where l is the subscript denoting the number of 
quadrants and 𝐻(∗(𝜀( , 𝑔(𝑥))  denotes the half 
space. The sign of half space H is decided using 
the following condition: 

𝐻(∗ = R𝐻(
7	if	the	𝑖 − th	digit	of	𝑙	in	binary	is	0

𝐻(.	if	the	𝑖 − th	digit	of	𝑙	in	binary	is	1
. 

Subsequently, the neighborhood set is defined. 
Neighborhood set 𝑁8;(𝑥) of object x on a partial 
set 𝐵 ⊆ 𝐶 is as follows: 

𝑁8;(𝑥) = {𝑦 ∈ 𝑈|Δ8(𝑥, 𝑦) ≤ 𝛿},  (9) 

where 𝛿  represents a neighborhood parameter. 
Δ8(𝑥, 𝑦) denotes the distance function and can 
be expressed as: 

Δ8(𝑥, 𝑦) = q Σ
%∈8

|𝑑𝑖𝑓𝑓(𝑥, 𝑦, 𝑎)|<s
%
&, (10) 

where 𝑃 = ∞,  which corresponds to the 
Chebyshev distance. 

Given a partial set 𝐵 ⊆ 𝐶  and objects 𝑥, 𝑦, 
the fundamental set 𝑅89;(𝑥) can be defined using 
(8) and (9) as follows: 

𝑅89;(𝑥) = Y𝑦 ∈ 𝑈	|	𝑦 ∈ 𝑄89 (𝑥) ∩ 𝑁8;(𝑥)\ (11) 

where t represents the number of objects and 
takes values ranging from 2 to 20. Card means 
cardinality of the set. Using this fundamental set, 
the directional neighborhood (DN)-lower 
approximation set and DN-upper approximation 
set of an arbitrary set X can be defined as follows: 

𝑅8(𝑋) = Y𝑥Z𝑅89;(𝑥) ⊆ 𝑋, ∃𝑙\, (13) 

𝑅8(𝑋) = Y𝑥Z𝑅89;(𝑥) ∩ 𝑋 ≠ ∅, ∀𝑙\. (14) 

In the case of land cover classification, the X 
means a set of training data whose elements 
belong to an arbitrary class for land cover 
classification. 

2.2  Subdivision of DN-Lower Approximation 
Set 

In this section, a new concept is induced in the 
DNRS approach. Equation (15) is a special case 
of (13). 

𝑅8(𝑋) = Y𝑥Z𝑅89;(𝑥) ⊆ 𝑋, ∀𝑙\. (15) 

This development acknowledges a variance in 
the degree of certainty between (13) and (15), a 
distinction not originally accounted for in DNRS. 
To elucidate this difference, an illustrative 
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example is provided in Figure 1, where the target 
object is positioned at the axis intersection in both 
scenarios (a) and (b). To determine whether the 
object at the axis intersection qualifies as DN-
lower, it should be evaluated in the context of 
surrounding objects. Both target objects in (a) and 
(b) meet the criteria for inclusion in the lower 
approximation set as per (13). However, the target 
object in (b) additionally fulfills the conditions of 
(15). The key distinction between (a) and (b) in 
Figure 1 lies in the proximity of different class 
objects to the target object in (a), in contrast with 
the exclusive presence of same-class objects near 
the target object in (b), underscoring the rationale 
for differentiating the degree of certainty between 
these scenarios. Thus, the degree of certainty is 
proposed to be directly proportional to the 
fraction of fundamental sets satisfying the lower 
approximation conditions across 2$  quadrants, 
expressed as follows: 

𝜇(𝑥) = =4>?({9	|B'
()(+)⊆D})

"*
.  (16) 

where Card means cardinality of the set. 
Extraction of DN-lower samples meeting a 
specified threshold α is then facilitated through 
the following equation: 

𝑅8E(𝑋) = {𝑥|𝜇(𝑥) ≥ 𝛼}.  (17) 

The selection of a higher α correlates with 
increased certainty. Notably, α represents relative 
certainty within a dataset. Typically, the 
occurrence of multiple classes within the same 
fundamental set is indicative of class boundaries 
in the feature space. Consequently, employing the 
DN-lower approximation set as a methodological 
tool serves to eliminate superfluous or uncertain 
training data situated at class boundaries, thereby 
enhancing the precision of training data selection 

for improved land cover classification. 

 
(a) Example of lower approximation object 

satisfying only (13) 

 

(b) Example of lower approximation object 
satisfying both (13) and (15) 

Figure 1: Illustration of variations in DN-lower 
approximation definitions within a two-
dimensional feature space: x represents the target 
object. 

2.3 Comparison with existing methods 

In order to clarify the novelty and features of 
the proposed method, we compare the proposed 
method with existing methods. Table 1 shows the 
comparison of the refinement methods for 
training data. While almost all of the existing 
methods use existing land cover maps to create 
refined training data, Taskin (2009) and the 
proposed method use original training data. 
Creating refined training data from the existing 
land cover map is less laborious than creating that 
from training data. However, the accuracy of 
training data from the existing land cover maps 
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more or less depends on that of the existing land 
cover maps. In addition, the method is limited in 
the case that land cover maps exist. On the other 
hand, creating refined training data from original 
training data needs to prepare the original training 
data, and it is time-consuming. In addition, the 
proposed method needs hyperparameter settings. 
Therefore, it is relatively time-consuming 
compared to existing methods. Instead, there is no 
worry about the limitation depending on the 
accuracy of land cover maps. In addition, it is 
different from the existing research to discuss not 
only training data but also validation data. As 
shown in Table 1, some existing methods focus 
on class boundaries. However, the definition of 

class boundaries is different among them. The 
class boundaries in Taskin (2009) are based on 
visual analysis. This is a concern about the results 
being different depending on the person who 
interprets. The class boundaries defined by 
Radoux et al. (2014) mean on the map, not feature 
space. The most important feature of the proposed 
method is to decide the class boundary 
theoretically based on set theory and therefore 
non-parametrics. The same results are derived 
from the proposed method, not depending on the 
person. The distribution of class in feature space 
is not limited to parametric distribution such as 
Gaussian distribution.

Table 1: Comparison of the refinement methods for training data. 

3. DATASETS 

This study utilizes two distinct remote sensing 
datasets to evaluate the effectiveness of the 
DNRS approach in extracting reliable training 
and validation data. The first dataset originates 
from the Landsat-8 operational land imager (OLI), 
covering the southern part of Ibaraki, Japan. The 
second dataset, referred to as flightline C1 
(FLC1), encompasses the agricultural land in the 

southern region of Tippecanoe County, Indiana 
(Landgrebe, 1994). For the purposes of this study, 
these datasets are henceforth designated as 
Landsat-8 and FLC1, respectively. 

The Landsat-8 dataset, captured on May 31st, 
2014, incorporates features from the 1st to the 7th 
bands with a spatial resolution of 30 m, spanning 
an image size of 667 × 667 pixels. The target area 
is depicted in Figure 2 (a). The classification 

Article Data to create
refinement training

Method Focus on Hyperparameters

Taskin (2009) Training data

Step1: Visual analysis of the training pixels
for depicting the decision boundaries in two
and tree dimensional graphs
Step2: Mixed and atypical pixels were
detected and eliminated using visual
histogram analysis

Class boundary in
feature space and
spectral outlier from
histgram

None

Radoux et al.
(2014)

Existing global land
cover map

Step1: Local training
Step2: Trimming training data using MBRF
(multiclass border reduction filter) or
Spectral filtering

Class boundary on
map and spectral
outlier based on
Mahalanobis distance

Width of the central tile
and of the corresponding
training area (Step1) and
MBRF or window size for
trimming (Step2)

Paris and Bruzzone
(2021)

Existing land cover
map

Step1: Understand the source domain
propoerties
Step2: Decompose the source domain
Step3: Training data extraction using
Gaussian-distribution

Mixed pixel
decomposition and
outlier form
Gaussian-distribution

None

Bratic et al. (2023)
Existing global land
cover map

Majority vote of multiple land cover maps
Reliability based on
majority

None

Proposed method Training data Using DNRS lower approximation
Class boundary in
feature space

t and alpha
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includes seven land cover classes: Water (1), 
Cropland (2), Sparse Grass (3), Grass (4), Forest 
(5), Paddy (6), and Built-up (7). The numbers in 
the brackets correspond to the Class No. used in 
the Results and Discussion section (e.g. Figure 5 
(a) and (b)). A stratified random selection process 
produced approximately 200 training data points 
per class, presenting in a total of 1412 training 

data points. We randomly selected 50 data points 
for each class for validation purposes, yielding a 
comprehensive validation dataset of 350 points. 
The validation points are presented in Figure 2 (a). 
The validation and training data points were 
interpreted using Google Earth imagery and 
supplemented by field surveys where feasible.

 

 

 

 
 

 
(a) Landsat-8 image (R=4, G=3, B=2) (top) 

and validation points (bottom) 
(b) FLC1 (R=9, G=6, B=3) (left) 
and validation points (right) 

Figure 2: Images and Validation points used for experiments. 
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Table 2: Features of datasets. 
Landsat-8 dataset FLC1 dataset 

l Training and validation data are 
obtained on a pixel basis 

l Small size dataset 
l Satellite-based dataset 
l 7 bands 
l Seven land cover classes: Water, 

Cropland, Sparse Grass, Grass, 
Forest, Paddy, and Built-up 

l Training and validation data are 
obtained on a polygon basis 

l Large size dataset 
l Airborne-based dataset 
l 12 bands 
l Nine vegetation classes: Alfalfa, 

Bare Soil, Corn, Oats, Red Clover, 
Rye, Soybeans, Wheat, and Wheat-2 

The FLC1 dataset, provided by Purdue 
University (Landgrebe, 1994), features 12 
spectral bands and was acquired in June 1966. 
The image size is 949 × 220 pixels. It delineates 
nine vegetation classes: Alfalfa (1), Bare Soil (2), 
Corn (3), Oats (4), Red Clover (5), Rye (6), 
Soybeans (7), Wheat (8), and Wheat-2 (9). The 
numbers in brackets correspond to the Class No. 
used in the Results and Discussion section (e.g. 
Figure 5 (c) and (d)). The original dataset, 
comprising 70,594 test data points as shown in 
Figure 7 in Appendix A, was partitioned into one 
validation dataset and thirty training datasets, 
each containing approximately 2,000 test data 
points. For the scope of this analysis, only five out 
of the thirty training datasets were utilized, 
deemed sufficient to discern the trends of the 
FLC1 dataset. Figure 2 (b) depicts the FLC-1 
image and validation points. 

The purpose of using these two datasets is to 
demonstrate the versatility of the method 
proposed. Therefore, we intentionally selected 
datasets whose features are different. Table 2 lists 
the features of these two datasets. Both the 
Landsat-8 and FLC1 datasets underwent 
normalization to fit within the [0.0, 1.0] range, 

ensuring uniformity in data processing and 
analysis. 

4. EXPERIMENTS 

Figure 3 depicts the four workflow patterns for 
land cover classification. (a) depicts general 
workflow as control. (b) depicts the workflow 
that tests the effectiveness of reliable training data 
extraction using DNRS. (c) depicts the workflow 
that tests the effectiveness of reliable validation 
data extraction using DNRS. (d) depicts the 
workflow that tests the effectiveness of both 
reliable training and validation data using DNRS. 
The DNRS technique is employed to procure 
assured training and/or validation data. 

Detailed procedure of DNRS 
training/validation extraction is shown in Figure 
4. In the step of “Search the optimal 𝛿 for each 
training/validation data (𝑡=10)” in Figure 4, the 
optimal 𝛿  which satisfies Equation (12) is 
calculated for each dimension of each element of 
training/validation data. In this study, the 
parameter t, the number of elements that should 
be included in a fundamental set, was fixed 𝑡 =
10. Although it takes time to adapt the parameter 
t, one can obtain more accurate results. However, 
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the parameter t is not the main theme in this study, 
so we used the fixed value. In the step of 
“Calculate the rate of lower approximation” in 
Figure 4, the rate of dimension that satisfies DN-
lower approximation definition to all dimensions 
is calculated for each training/validation data. If 
the element of training/validation data satisfies 
the condition, it is recognized as certain 
training/validation data and used for machine 
learning and/or accuracy assessment. In this step, 
the threshold denoted as α, is meticulously 
surveyed from 0.000 to 1.000 in increments of 
0.005 for both the Landsat-8 and FLC1 datasets. 
For a more detailed examination of trend nuances 
within the FLC1 dataset, the α threshold for 
training data was further investigated from 0.900 

to 1.000 in finer intervals of 0.001. 

The SVM (support vector machine) classifier 
was selected for land cover classification due to 
its widespread acceptance and proven efficacy in 
the field, particularly in handling class boundaries. 
The tuning of SVM hyperparameters was carried 
out across a specified range, with C values of 1.0, 
10.0, 100.0, and 1,000.0, and 𝛾 values of 0.001, 
0.01, 0.1, 1.0, and 10.0. In addition, a control 
experiment was conducted, wherein the original 
training data was directly subjected to SVM 
learning, without the intermediary step of DNRS-
based refinement. Kappa coefficient was used for 
the accuracy assessments of land cover maps.

  
(a) (b) 

  
(c) (d) 

Figure 3: Workflows for land cover classification: (a) depicts the general workflow as control. (b) 
depicts the workflow that tests the effectiveness of reliable training data extraction using DNRS. (c) 
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depicts the workflow that tests the effectiveness of reliable validation data extraction using DNRS. (d) 
depicts the workflow that tests the effectiveness of both reliable training and validation data using 
DNRS. 

 
Figure 4: Flow of training/validation data extraction using DNRS. 

 
5. RESULTS 

The kappa coefficients of land cover maps, 
reflecting the conditions of SVM 
hyperparameters, are presented in Table 3 for the 
Landsat-8 dataset and Table 4 for the FLC1 
dataset. In the case of FLC1, five datasets were 
randomly selected from the original pool of thirty 
to ascertain the prevailing trends. Table 4 presents 
the kappa coefficient for one representative 
dataset from these five. Four out of five datasets 
are presented in Appendix B since these results 
indicate similar trends. In these tables, the rows 
represent the proportion of training data 
corresponding to the original training dataset. The 
first to the third columns list the kappa 
coefficients, whereas the fourth and fifth columns 
list the optimal combination of hyperparameters 
obtained when tuning was performed using the 
validation dataset. The term “points” within the 

brackets in Tables 2 and 3 specifies the sample 
count, and α represents the threshold for DN-
lower approximation, as defined in (17). The 
kappa coefficient in the first row corresponds to 
scenarios where the original training data was 
employed for model training. Tables 2 and 3 
present results that are limited to instances where 
the proportion of assured training data ranges 
from 50% to 100%, in increments of 
approximately 10%. This non-uniform interval 
for the assured training data proportion is 
attributed to the challenge of precisely controlling 
the sample count reduction through DNRS, since 
the extent of reduction is contingent upon the 
sample distribution within the feature space. The 
kappa coefficient highlighted in bold in these 
tables represents the highest values among the 
training datasets when assessed with identical 
validation data, indicating the most favorable 
classification outcomes under given conditions.
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Table 3: Kappa coefficients and hyperparameters for Landsat-8 dataset. 

 

Table 4: Kappa coefficients and hyperparameters for FLC1 dataset (Dataset No. 1). 

6. DISCUSSION 
6.1 Landsat-8 dataset 

The kappa coefficient when the training data is 
reduced by DNRS is higher than that of the 
original training data in all the validation data 
cases (in three columns) presented in Table 3. The 
comparison in the first column in Table 3 
corresponds to the comparison between (a) and (b) 
presented in Figure 3. This comparison 
demonstrates the effectiveness of training data 
refinement by DNRS in the condition of original 
validation data. The accuracy for the scenarios 
with reduced training data was found to improve 
when the proportion of assured training data was 

at 89% and 80% in the first column in Table 3. 
Conversely, this accuracy decreased at lower 
proportions of the assured training data, 
specifically at 61% and 51%. The initial 
improvements in accuracy can be attributed to the 
removal of uncertain training data, enhancing the 
performance of the classifier by focusing on more 
reliable samples. However, the subsequent drops 
in accuracy indicate the detrimental impact of 
information loss. Essentially, while a higher 
threshold of DN-lower approximation correlates 
with increased certainty in the training data, it 
paradoxically leads to diminished accuracy due to 
the insufficiency of the data required to 

Original
100% (350
points, α=0.000)

78% (274
points, α=0.830)

50% (175
points, α=0.870)

C Gamma

Original 100% (1412
points, α=0.000)

0.863 0.914 0.957 100.0 10.0

89% (1263
points, α=0.720)

0.873 0.923 0.957 1000.0 0.1

80% (1134
points, α=0.750)

0.877 0.931 0.957 100.0 10.0

71% (1002
points, α=0.775)

0.863 0.923 0.957 1000.0 0.1

61% (868 points,
α=0.800)

0.853 0.923 0.964 100.0 10.0

51% (718 points,
α=0.825) 0.807 0.867 0.950 100.0 10.0

SVM's
Hyperparameters

Rate of assured validation data to original one
Reduced by DNRS

Rate of assured
training data to
original one

Reduced
by
DNRS

Original
100% (2318
points, α=0.000)

75% (1739
points, α=0.931)

50% (1152
points, α=0.953)

C Gamma

Original
100% (2224
points, α=0.000)

0.948 0.972 0.975 100.0 10.0

90% (1997
points, α=0.910)

0.941 0.969 0.974 100.0 10.0

80% (1779
points, α=0.926)

0.924 0.969 0.980 1000.0 1.0

70% (1552
points, α=0.937)

0.913 0.964 0.974 1000.0 10.0

60% (1344
points, α=0.945)

0.896 0.953 0.971 1000.0 10.0

50% (1116
points, α=0.952) 0.887 0.944 0.976 1000.0 1.0

Rate of assured validation data to original one SVM's
HyperparametersReduced by DNRS

Rate of assured
training data to
original one

Reduced
by
DNRS
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accurately represent the true distribution of 
classes. These results indicate that the most 
appropriate α value for obtaining a balance 
between the elimination of low reliable data and 
not occurring information loss exists. It is 
considered that this most appropriate α depends 
on the distribution of training data in the feature 
space. A comparison of the three columns 
corresponding to the kappa coefficients reveals 
similar trends. The comparison in the first row in 
Table 3 corresponds to the comparison between 
(a) and (c) in Figure 3, which represents the 
effectiveness of the validation data refinement 
presented by DNRS. The results of the first row 
indicate the validation data is reduced by DNRS, 
and the accuracy increases under the condition of 
the same original training data. However, it is 
crucial to carefully interpret the results. These 
results do not imply that simply reducing the 
validation data will improve accuracy. Instead, 
they indicate that accuracy assessment can be 
performed according to the purpose, e.g., when 
the land cover map is to be assessed only with 
highly reliable validation data or also with 
unreliable validation data. 

6.2 FLC1 dataset 

Although the kappa coefficient when the 
training data is reduced by DNRS is higher than 
that of the original training data in 50% of the 
validation data cases (in the third column) 
presented in Table 4, the kappa coefficient of the 
original training data is higher than that when the 
training data is reduced by DNRS in original and 
75% of the validation data (in the first and second 
column) presented in Table 4. This is because the 
effectiveness of the training data refinement 
achieved by DNRS is not observed in the original 
and 75% of the validation data is caused by the 

approach employed in obtaining the validation 
data. The validation data for the FLC1 dataset 
was taken polygon base in the cropland region, as 
shown in Table 2. That is, the noisy data may be 
included in the validation data. Consequently, 
even if the training data is refined by DNRS, the 
effectiveness of the training data refinement is not 
observed when the quality of validation data is 
insufficient. The effectiveness of the training data 
refinement is observed when the quality of 
validation data is also sufficiently ensured, as 
shown in the third column in Table 4. 

6.3 Visual analysis in feature space 

Figure 5 presents the results of visualizing the 
training data at 𝛼 = 0.0  (the original training 
data) and 𝛼 = 0.75  (the highest accuracy 
training data) for Landsat-8 dataset and the 
training data at 𝛼 = 0.0  (the original training 
data) and 𝛼 = 0.926  (the highest accuracy 
training data) for FLC1 dataset in the feature 
space to visually verify the effectiveness of the 
proposed method. Figures 4 (a) and (c) depict the 
distribution of the training data using the original 
training data for each dataset, and Figures 4 (b) 
and (d) depict the distribution of the training data 
extracted by DNRS lower approximation at 𝛼 =
0.75  for Landsat-8 and 𝛼 = 0.926  for FLC1. 
Seven bands of Landsat-8 images and 12 bands of 
FLC1 are used for the reliable training data 
extraction process; thus, the feature space in 
Figure 5 indicates the subspace. The major 
difference between Figures 4 (a) and (b), and (c) 
and (d) is the samples near the class boundaries 
(black circles in the scatter plots). While there is 
training data around the class boundaries in 
Figures 4 (a) and (c), the number of training data 
around the class boundaries is reduced in Figure 
5 (b) when compared to that of Figure 5 (a), and 
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Figure 5 (d) when compared to Figure 5 (c). 
These results indicate that the proposed training 
data refinement method is characterized by the 
training data near the class boundaries being less 
reliable and excluded by lower approximation in 
DNRS. At the same time, the distribution of the 
reduced training data becomes closer to the true 
class distribution on the feature space, as shown 
in the accuracy improvement in Tables 2 and 3 
under the conditions of the reliable validation 
datasets. 

6.4 Number of data for each class 

Figures 6 and 7 indicate the transformation of 
the number of validation data for each class. 

Figure 6 shows that the classes corresponding to 
vegetation (Cropland, Sparse grass, and Grass) 
are reduced by DN-lower approximation. These 
classes have many class boundaries on the feature 
space with each other. Similarly, Figure 7 shows 
that as the DNRS threshold α is increased, some 
classes decrease significantly while others do not. 

Therefore, the number of validated data may 
be highly skewed by the class when reliable 
validated data is extracted using DNRS. 
Conversely, if the results are used effectively, 
non-separable classes can be reliably classified 
by merging them and then performing the land 
cover classification again.

 

Figure 5: Representation of training data distribution across different classes in the feature subspace. (a) 
is the distribution of the original training dataset for Landsat-8. (b) is the distribution of training data 
extracted by DNRS lower approximation at α=0.75 for Landsat-8. (c) is the distribution of the original 
training dataset for FLC1. (d) is the distribution of training data extracted by DNRS lower 
approximation at α=0.926 for FLC1. The color bar identifies distinct classes, and "Ch" indicates the 
band number. Black circles in the scatter plots are the regions where the variation between (a) and (b), 
and between (c) and (d) are relatively large. 
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Figure 6: Number of validation data for each class for Landsat-8. 

 

Figure 7: Number of validation data for each class for FLC1.

6.5 Optimal sample size 

For training data, the optimal sample size is 
automatically determined based on the proposed 
method by selecting the parameter when the 
accuracy was the highest, using the same 
validation data. However, the selection of the 
optimal sample size for validation data is a little 
bit complicated. As shown in Tables 3 and 4, the 
more validation samples are decreased, the higher 
the accuracy is. While, the accuracy stability 
becomes less when the validation samples are 
reduced, based on the law of large numbers. If the 

purpose of accuracy assessment is to assess the 
accuracy using only reliable validation data, the 
optimal sample size of the validation data is the 
minimum number of the validation data by using 
proposed method, satisfying statistically adequate 
number. The definition of the statistically 
adequate number is discussed in a lot of existing 
studies (Cochran, 1977; Congalton, 1991; Foody, 
2008) and depends on the situations of indices, 
sampling, etc. (e.g. overall accuracy, kappa 
coefficient, user’s accuracy, producer’s accuracy, 
simple random sampling, stratified sampling). 
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6.6 Summary of experiment results 

These experiments demonstrate that the 
proposed training and validation refinement 
method using DN-lower approximation can 
effectively select training data and help improve 
the accuracy of land cover classification. It also 
provides the assessment method using validation 
data under several confidence levels depending 
on the purposes. Visual analysis of the training 
data demonstrated that the data determined to 
have low confidence levels by DNRS are those 
that lie on the boundaries of the classification 
class on the feature space. This property also 
applies to the validation data. Therefore, the 
higher the confidence level of the validation data 
determined by the DNRS, the more the validation 
data in the boundary areas are reduced. That is, 
the confidence level of the validation data 
corresponds to the amount of validation data 
included in the boundary regions on the feature 
space. 

The limitations of the proposed method are as 
follows: This method needs to optimize two 
hyperparameters: one is t in Equation (12) and α 
in Equation (17), and the range of 
hyperparameters depends on the dataset as shown 
in Tables 2 and 3. Therefore, the cost of parameter 
setting is needed. Second, there is a possibility 
that the deviation of the amount of training and/or 
data among classes yields because of the 
characteristics of this method which reduces the 
elements of class boundary in the feature space. 
Figures 5 and 6 imply the trend of this limitation. 

For future work, the robustness of the 
proposed method will be checked by assuming 
various satellite imagery, and land cover 
classification classes. 

7. CONCLUSION 

In this study, we present a novel method for 
refining the training and validation data by 
utilizing the DN-lower approximation concept 
thereby enhancing the accuracy of land cover 
classification and assess the accuracy with more 
precision. The proposed method is based on the 
rough set theory, which enables all decision rules 
to hold, and has few theoretical black box aspects, 
making it a suitable method for reliable training 
and validation data extraction. 

The effectiveness of the proposed method was 
evaluated by performing a land cover 
classification into seven land cover classes using 
the Landsat-8 dataset and into nine vegetation 
classes using the FLC1 dataset. The results 
demonstrate that reducing the training data using 
the proposed method improves the land cover 
classification accuracy when compared to using 
the original training data. In addition, we provide 
the accuracy assessment method for land cover 
maps at several confidence levels using 
validation data extracted by DN-lower 
approximation. The confidence level of the 
validation data based on DNRS corresponds to 
how much validation data in the boundary regions 
on the feature space is included. 

In future work, we aim to verify the robustness 
of the proposed method by assuming various 
satellite imagery and land cover classification 
classes. 
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APPENDIX A 

 

 

Figure 8: Distribution of original FLC1 test dataset. 

APPENDIX B 

The original FLC1 dataset was divided into 30 training datasets and one validation dataset. In this 
study, five out of 30 training datasets were used for experiments. In this appendix, the results of four 
out of five training datasets are listed below to show that all data sets are mostly similar in trend. 
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Table 5: Kappa coefficients and hyperparameters for FLC1 dataset (Dataset No. 2). 

 

Table 6: Kappa coefficients and hyperparameters for FLC1 dataset (Dataset No. 3). 

 

Table 7: Kappa coefficients and hyperparameters for FLC1 dataset (Dataset No. 4). 

 

 

Original
100% (2318
points, α=0.000)

75% (1739
points, α=0.931)

50% (1152
points, α=0.953)

C Gamma

Original
100% (2241
points, α=0.000)

0.945 0.972 0.982 1000.0 1.0

90% (2014
points, α=0.910)

0.941 0.973 0.986 100.0 10.0

80% (1790
points, α=0.926)

0.930 0.975 0.984 100.0 10.0

70% (1570
points, α=0.936)

0.911 0.967 0.982 1000.0 10.0

60% (1343
points, α=0.946)

0.877 0.943 0.983 100.0 10.0

51% (1133
points, α=0.953) 0.867 0.944 0.979 100.0 10.0

Rate of assured
training data to

original one
Reduced

by
DNRS

Rate of assured validation data to original one
Reduced by DNRS

SVM's
Hyperparameters

Original
100% (2318
points, α=0.000)

75% (1739
points, α=0.931)

50% (1152
points, α=0.953)

C Gamma

Original
100% (2241
points, α=0.000)

0.947 0.971 0.974 100.0 10.0

90% (2009
points, α=0.909)

0.939 0.967 0.968 1000.0 10.0

80% (1798
points, α=0.925)

0.933 0.967 0.970 1000.0 10.0

70% (1578
points, α=0.936)

0.915 0.963 0.976 1000.0 10.0

60% (1344
points, α=0.945)

0.901 0.955 0.977 1000.0 10.0

50% (1116
points, α=0.952) 0.888 0.941 0.977 1000.0 10.0

Rate of assured validation data to original one SVM's
HyperparametersReduced by DNRS

Rate of assured
training data to

original one
Reduced

by
DNRS

Original
100% (2318
points, α=0.000)

75% (1739
points, α=0.931)

50% (1152
points, α=0.953)

C Gamma

Original
100% (2284
points, α=0.000)

0.952 0.974 0.974 100.0 10.0

90% (2051
points, α=0.912)

0.936 0.968 0.978 100.0 10.0

80% (1827
points, α=0.927)

0.930 0.970 0.981 1000.0 1.0

70% (1606
points, α=0.936)

0.909 0.956 0.980 100.0 10.0

60% (1378
points, α=0.944)

0.898 0.951 0.978 100.0 10.0

50% (1133
points, α=0.953) 0.871 0.932 0.977 100.0 10.0

Rate of assured validation data to original one SVM's
HyperparametersReduced by DNRS

Rate of assured
training data to

original one
Reduced

by
DNRS
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Table 8: Kappa coefficients and hyperparameters for FLC1 dataset (Dataset No. 5). 

 

Original
100% (2318
points, α=0.000)

75% (1739
points, α=0.931)

50% (1152
points, α=0.953)

C Gamma

Original
100% (2306
points, α=0.000)

0.945 0.970 0.976 100.0 10.0

90% (2077
points, α=0.911)

0.930 0.968 0.975 100.0 10.0

80% (1846
points, α=0.927)

0.929 0.967 0.972 1000.0 10.0

70% (1617
points, α=0.936)

0.906 0.956 0.977 1000.0 10.0

60% (1390
points, α=0.944)

0.884 0.946 0.978 1000.0 1.0

50% (1160
points, α=0.952) 0.853 0.925 0.976 100.0 10.0

Rate of assured validation data to original one SVM's
HyperparametersReduced by DNRS

Rate of assured
training data to

original one
Reduced

by
DNRS


