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ABSTRACT 

In this study, we developed a method to create a dense three-dimensional (3D) map in real time using a 
stereo camera mounted on a drone and oriented features from accelerated segment test (FAST) and 
rotated binary robust independent elementary features (BRIEF) simultaneous localization and mapping 
(ORB SLAM), which simultaneously estimates self-location and generates sparse 3D point clouds. 
Sparse point clouds from ORB SLAM are insufficient for automating crane operations, necessitating 
conversion to dense point clouds. Traditional multi-view stereo (MVS) methods are unsuitable for real-
time processing due to their computational demands. Our method addresses this by generating dense 
point clouds from stereo cameras, integrating them using self-estimation data, and filtering out outliers. 
Using simulation data representing construction sites, including buildings and cranes, we evaluated 
approximately 4,500 video frames. The process took 545.1 seconds and accurately captured site details 
such as building textures and object shapes. Future work will focus on developing algorithms to update 
only changed objects in the map, enabling dynamic representation of construction sites. 

Keywords: Photogrammetry, ORB SLAM, Computer vision, 3D mapping, ROS, Three-dimensional 
map 

 

1. INTRODUCTION 

Recently, the number of crane operators at 
construction sites has been decreasing owing to 
the aging of workers, declining rate of young 
people entering the workforce, and reduction in 
working hours because of work-style reforms. 
According to the report "Current Status and 

Issues Surrounding the Construction Industry," 
published by the Ministry of Land, Infrastructure, 
Transport, and Tourism, the number of 
construction companies at the end of fiscal year 
2021 was approximately 480,000, a decrease of 
approximately 21% from the peak at the end of 
fiscal year 1999 (Ministry of Land, Infrastructure, 
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Transport and Tourism, 2023). Additionally, the 
average number of construction workers in 2022 
was 4.79 million, a decrease of approximately 30% 
from the average in 1997.  

As highlighted above, labor shortages in the 
construction industry have become a significant 
societal issue. One potential solution to this 
problem is the automation of crane operations, 
which could help alleviate the strain on the 
workforce and maintain productivity. For 
instance, automating the transport of suspended 
loads can improve efficiency and reduce reliance 
on experienced crane operators. However, to 
enable automated crane operations, obtaining an 
accurate three-dimensional (3D) representation 
of the construction site is essential. In our crane 
automation concept, we aim to create a fresh 3D 
map of the construction site in approximately 5–
10 min each morning before work begins. By 
generating a map at the start of each day, we can 
capture the latest state of the site environment, 
thereby providing a reliable basis for automation. 
This initial map then serves as a foundation, 
enabling us to update it in real time as 
construction progresses and conditions change 
throughout the day. Our study focuses 
specifically on the process of daily initial map 
generation and targets cost-effectiveness, speed, 
and accuracy, using only image data. 

To develop the initial map, we employed a 3D 
map derived from a monocular camera affixed to 
the end of the crane boom in accordance with 
methodologies established in prior research 
(Kobayashi et al., 2023). This study involved 
capturing the surrounding environment within 
approximately 10 min through the rotation of the 
boom before the initiation of operational 
activities. However, several challenges hinder its 

practical application. The foremost issue pertains 
to the physical limitations of the camera mounted 
at the end of the crane hook, which restrict the 
range of the generated 3D map. In addition, the 
scale remains indeterminate when using a 
monocular camera. These challenges are 
unacceptable, given the objective of automating 
crane operations. Therefore, we propose a method 
to address these issues. Next, we provide an 
overview of the proposed approach. 

To address these challenges, a stereo camera 
was attached to the drone. This mounting strategy 
enabled the mitigation of the physical limitations 
imposed by attaching a camera to the crane hook. 
Furthermore, the implementation of a stereo 
camera effectively resolves the scale ambiguity 
characteristics of monocular cameras. 
Reconstruction in 3D using drones and image 
data has been widely studied and offers solutions 
across various fields such as construction, 
archaeology, agriculture, and environmental 
monitoring. For instance, archaeological site 
mapping uses structure from motion (SfM) 
(Tomashi et al., 1992; Snavely et al., 2006), in 
which drone images are processed to reconstruct 
detailed 3D models (Barratt, 2021). Additionally, 
the use of drones for photogrammetry has proven 
to be effective in monitoring construction 
progress (Loyola et al., 2016) and forestry 
management for 3D modeling (Honkavaara et al., 
2012). However, all these studies reported 
considerable computational times for processing, 
which can delay immediate application in 
dynamic environments. 

To achieve a more efficient real-time mapping 
process, oriented features from accelerated 
segment test (FAST) and rotated binary robust 
independent elementary features (BRIEF) 
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simultaneous localization and mapping (ORB 
SLAM) (Campos et al., 2021) was adopted as the 
core component of our methodology. ORB 
SLAM provides a powerful framework for 
simultaneous localization and mapping, enabling 
real-time estimation of the position of the drone 
while generating a sparse 3D point cloud of the 
surroundings. This approach allows construction 
of an initial 3D map with minimal delay, which is 
crucial for the dynamic conditions of construction 
sites. However, because the point cloud generated 
by ORB SLAM is sparse and insufficient for 
crane automation, we developed an additional 
process to convert the sparse point cloud into a 
denser representation. Our proposed method 
leverages the position and orientation data 
provided by ORB SLAM to integrate 3D point 
clouds generated by a stereo camera, thereby 
achieving a denser and more accurate 
representation in real time. This approach 
addresses the initial challenge related to physical 
constraints and overcomes the limitations of 
time-intensive methods, such as multi-view 
stereo (MVS), ensuring that real-time 
performance is maintained. 

2. METHODOLOGY 

2.1 Overview 

This study presents a comprehensive 
methodology for generating a 3D map of a 
construction site by integrating a unity-based 
simulation environment with a Robot Operating 
System (ROS) framework designed specifically 
for image processing. Figure 1 illustrates the 
overall process flow. The simulated environment, 

meticulously constructed using Unity (Unity 
Technologies, 2024), accurately replicates a 
realistic construction site complete with buildings 
and vehicles, as shown in Figure 2. Within this 
virtual setting, a drone equipped with a stereo 
camera captures images from the left and right 
sides of the site, which were subsequently used to 
reconstruct a 3D map. Image processing occurs 
within the ROS framework, which initiates a 
mapping workflow by estimating the position and 
orientation of the stereo camera using the ORB-
SLAM algorithm. This algorithm processes the 
stereo images obtained from a drone to provide 
precise self-localization data. Once the position 
of the camera is established, a disparity image is 
generated by analyzing the left and right image 
pairs captured by the stereo camera. This 
disparity image is then converted into a 3D point 
cloud for each frame. The 3D point clouds 
generated at various time intervals are integrated 
using the camera position and orientation data to 
ensure spatial consistency throughout the 
sequence. However, a noise reduction process is 
implemented because of the inherent noise 
present in point clouds arising from factors such 
as unintended distortions, pixelation, blurring, or 
color shifts caused by sensor limitations or errors 
in image processing. Specifically, the k-nearest 
neighbor (k-NN) method filters out erroneous 
points and enhances the overall quality of the 3D 
map. The proposed workflow demonstrates 
seamless integration of simulation and real-time 
image processing, facilitating the development 
and evaluation of 3D mapping techniques within 
a controlled environment.
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Figure 1: Overview of the study method. 

 
Figure 2: Image of the simulator environment used for the study.

2.2 ORB SLAM 

ORB-SLAM systems are extensively 
employed across various domains, including 
robotics, autonomous driving, and augmented 
reality (AR). This is a visual SLAM system 
capable of real-time operation that supports 
monocular stereo and red, green, blue, depth 

(RGB-D) cameras. For the purposes of this study, 
a stereo camera was selected as the sensor for 
self-localization and mapping, which uses the 3D 
information of the environment. ORB SLAM 
adopts a feature-based approach that involves 
detecting keypoints using the FAST algorithm 
and describing these features using BRIEF, 
thereby enabling efficient and robust tracking and 
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map generation. Furthermore, ORB SLAM 
incorporates functionalities for loop closure 
detection and relocalization. Loop closure 
detection facilitates the identification of instances 
when the system re-enters a previously mapped 
area, thereby rectifying accumulated drift errors 
and enhancing the overall map accuracy. 
Relocalization refers to the capability of the 
system to recover from tracking failures by 
recognizing features from a previously mapped 
environment and reestablishing its spatial 
position within the map. These functionalities 
contribute significantly to maintaining high 
accuracy even during prolonged operational 
periods. ORB SLAM was selected for this study 
because it provides accurate self-localization and 
map generation in visual SLAM using stereo 
cameras. It is distinguished by its proficiency in 
real-time processing and its stable performance in 
dynamic environments, which align 
harmoniously with the objectives of this study. 

2.3 Generate disparity images and 3D point 
clouds 

Disparity refers to the variation in the image 
coordinate system when capturing the vertices of 
a feature from the left and right cameras. This 
quantifies the positional difference of the same 
object between images obtained from different 
viewpoints, resulting in a disparity value for each 
pixel in the left and right images. Figure 3 
illustrates the concept of disparity images. This 
diagram shows the feature point P through two 
cameras positioned on the left and right sides. It 
is assumed that both camera coordinate systems 
have no rotation around their respective axes (i.e., 
0 degrees), with the X-axis of the absolute 
coordinate system aligned with the line segment 
(O₁, O₂). The point P is represented as (𝑋ₚ, 𝑌ₚ, ℎ) 

in the absolute coordinate system. At the same 
time, it is designated as (𝑢! , 𝑣!) and (𝑢" , 𝑣") in 
the image coordinate systems of the left and right 
cameras, respectively. Disparity 𝑑# is defined as 
in Equation (1): 

𝑑# = 𝑢! − 𝑢" (1) 

The distance 𝐻  can be calculated using 
Equation (2), where the distance between the 
plane containing the principal points of the 
camera and the feature is 𝐻, the focal length is 𝑓, 
and the baseline length 𝐵: 

𝐻 =
𝐵𝑓
𝑑$

(2) 

Disparity is inversely proportional to the 
distance from an object. A larger disparity 
indicates proximity to an object, whereas a 
smaller disparity signifies greater distance. In this 
investigation, the disparity images at each point 
are combined to extract depth information for the 
entire construction site. A stereo camera generates 
these disparate images. The parallel alignment of 
the optical axes in stereo cameras helps identify 
the corresponding points between the left and 
right images, which increases the efficiency of 
subsequent calculations. In a stereo camera setup, 
the parallel optical axes ensure that the 
corresponding points shift primarily in the 
horizontal direction within the image. This limits 
the search for the corresponding points to a 
horizontal range, thus accelerating the 
computation. In contrast, using a monocular 
camera to estimate the disparity from images 
captured from multiple viewpoints requires 
capturing images from various angles. This 
necessitates an additional preprocessing step to 
correct and align them as if the optical axes were 
parallel. This rectification involves geometric 
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corrections across the images, leading to higher 
computational costs compared with a stereo 
camera setup. Consequently, stereo cameras 

avoid this rectification process, thereby 
simplifying the identification of corresponding 
points.

 
Figure 3: Illustration of disparity image generation using stereo cameras.

Smooth and continuous disparity maps are 
created while reducing the effect of local noise, 
thereby achieving high accuracy and in-depth 
estimation for various scenes. Furthermore, 
Semi-Global Matching (SGM) (Hirschmüller, 
2008) has lower computational demands than full 
global optimization, making it suitable for real-
time processing. 

Once the disparity map is generated, the 3D 
position of feature point P in the camera 
coordinate system can be calculated. Given a 
feature point P with its coordinates in the camera 
coordinate system as (𝑋#% , 𝑌#% , 𝑍#%)  and its 
corresponding image coordinates as (𝑢, 𝑣)  in 
the image coordinate system, then (𝑋#% , 𝑌#% , 𝑍#%) 
can be derived using the intrinsic parameters of 
the camera as shown in Equation (3). Here, 𝑓& 
and 𝑓' are the focal lengths along the 𝑥 and 𝑦 
axes, respectively, and 𝑐&  and 𝑐'  are the 
distances from the origin of the image coordinate 

system to the principal point. 
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This transformation allows for direct 
calculation of the depth from the disparity values 
of each pixel. This process is applied to every 
pixel in the image, resulting in a 3D point cloud 
that captures the depth information of the entire 
scene. The stereo camera setup eliminates the 
need for image rectification, which is essential in 
monocular camera systems. This enhances the 
efficiency of the depth estimation process. 

2.4 Integrate 3D point clouds 

The 3D point clouds obtained in the previous 
section are integrated across all the time instances. 
To achieve this goal, the coordinate system must 
be unified within a single reference frame. For 
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convenience, the camera position in the first 
keyframe is set as the origin of the world 
coordinate system. Figure 4 illustrates the 
relationship between the positions and 
orientations of the two cameras at different 
timestamps. The transformation between two 
coordinates systems is given in Equation (4). The 
camera coordinate system of Camera 2 can be 
transformed into that of Camera 1 using the 
rotation matrix 𝑅 and translation vector 𝑇. Here, 
𝑅  and 𝑇  are are derived from the pose 
estimation provided by ORB SLAM. Given a 3D 
point P D𝑋#

%! , 𝑌#
%! , 𝑍#

%!E  represented in the 
coordinate system of Camera 2, the 

corresponding point in the Camera 1 coordinate 
system can be expressed as 

F
𝑋#
%"

𝑌#
%"

𝑍#
%"

G = 𝑹F
𝑋#
%!

𝑌#
%!

𝑍#
%!

G + 𝑻 (4) 

When integrating 3D point clouds across 
different keyframes, the overlapping regions 
between the newly acquired and previously 
integrated point clouds are handled by taking the 
average. This transformation is performed on the 
3D point clouds obtained for all keyframes, and 
then integrated into a single coordinate system.

 

Figure 4: Illustration of the relationship of two cameras.

2.5 Remove noise 

The generated 3D point clouds contain noise 
because of factors such as imperfect image 
acquisition, errors in disparity estimation, and 
slight misalignments during point cloud 
integration. The k-NN method (Altman, 1992) is 
employed to mitigate this noise. This method is 
effective for noise removal because it evaluates 

the local density of points around a target point, 
allowing for the identification of outliers that 
deviate significantly from the expected 
distribution of neighbors. Such outliers typically 
occur due to measurement errors, sensor 
limitations, or integration inaccuracies, which 
result in low-density regions compared to the 
surrounding points. By defining a threshold based 
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on the average density of neighbors, the 
algorithm ensures that outliers can be robustly 
excluded. This approach significantly enhances 
both the accuracy and usability of 3D point clouds. 

The k-NN method is employed to analyze the 
density of points in the vicinity of each point and 
to identify outliers that are considered as noise. 
For a given point Pi, we determine the set of 
neighboring points 𝒩(𝑷𝒊)  based on the 
Euclidean distance. The Euclidean distances 
𝑑D𝑷𝒊, 𝑷𝒋E are defined as follows in Equation (5): 

𝑑D𝑷𝒊, 𝑷𝒋E =

ND𝑥, − 𝑥-E
. + D𝑦, − 𝑦-E

. + D𝑧, − 𝑧-E
. (5)

 

where 𝑷𝒊 = (𝑥, , 𝑦, , 𝑧,)  and 𝑷𝒋 = D𝑥- , 𝑦- , 𝑧-E 
represent the points in a 3D space. Next, the local 
density around point Pi is evaluated by averaging 
the distances to neighboring points in 𝒩(𝑷𝒊) . 
The average distance 𝑑/Q  is calculated as follows 
in Equation (6): 

𝑑/Q =
1
𝑘 S 𝑑D𝑷𝒊, 𝑷𝒋E
𝑷𝒋∈𝒩(𝑷𝒊)

(6) 

If this average distance (d_i ) ̅ exceeds a 
predefined threshold τ, the point P_i is classified 
as noise and removed from the point cloud: 

If 𝑑/Q > 𝜏, then 𝑷𝒊 is classified as noise. 

In addition to using the k-NN method for noise 
removal, we performed downsampling as part of 
the noise reduction process. After identifying and 
eliminating noisy points based on local density 
evaluation, the remaining point cloud is 
downsampled using a voxel grid approach. This 
method groups points within a predefined voxel 
size into a single representative point, thereby 
effectively reducing the number of points while 
preserving the overall structure and details of the 
scene. By doing so, it is easier to update the 3D 

point clouds. 

3. RESULTS AND DISCUSSION 

3.1 Simulator environment 

In this study, we used a simulation 
environment developed using Unity. Figure 2 
shows an image captured using the developed 
simulator. The simulated environment included 
buildings, construction materials, and vehicles 
replicated at the construction site. A stereo 
camera was mounted vertically downward on a 
drone, which can be controlled using the 
directional keys of the Joy-Con for flight. The 
drone captured images while orbiting the 
construction site. The captured left and right 
images were transmitted from Unity to the ROS. 
Once the image pairs were sent to the ROS, ORB 
SLAM was initiated for processing. 

3.2 Computational environment 

The computational environment used in this 
study is summarized in Table 1. This setup was 
used to run ORB SLAM and the associated 3D 
mapping processes. 

Table 1: Summary of the computation 
environment. 

Specification Detail 
CPU Intel(R) Core (TM) i7-9700 
Memory 32 GB 
Swap Memory 2 GB 
Operating 
System 

Ubuntu 20.04.1 LTS 

Kernel Version 5.15.0-107-generic 

3.3 Drone flight path 

The precision of the 3D mapping was 
significantly enhanced by optimizing the flight 
trajectory of the drone. This trajectory 
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incorporates loop closures, which are critical for 
mitigating the accumulated drift errors within the 
ORB SLAM framework. By devising a route that 
enables a return to previously surveyed locations, 
the system can rectify the positional inaccuracies 
that may arise during the mapping process. 
Moreover, the drone maintains a constant altitude, 
ensuring that the distance between the camera and 
the ground or targeted objects remains uniform. 
This stability contributes to the dependable 
detection of feature points, thereby improving the 
accuracy of both the disparity images and the 
resultant 3D point clouds. 

 
Figure 5: Optimized drone flight path for 
enhanced 3D mapping accuracy with loop 

closure considerations. 

Figure 5 illustrates the optimized drone flight 
trajectory, which was specifically designed to 
enhance the accuracy of 3D mapping. This 
trajectory is characterized by intentional loop 
closures, which are vital for minimizing drift 
errors in the ORB SLAM methodology. The 
planned route enables the drone to revisit 
previously mapped areas, facilitating the 

rectification of positional inaccuracies identified 
during the initial mapping phase. Additionally, as 
illustrated by the arrows in the accompanying 
diagram, maintaining a stable altitude of the 
drone ensures a consistent distance between the 
camera and ground or targeted objects. This 
condition promotes the reliable detection of 
feature points, ultimately enhancing the accuracy 
of the disparity images and the resulting 3D point 
clouds. 

3.4 Data 

The stereo camera setup was created by 
aligning two ideal cameras without lens distortion 
and was provided by Unity by default. The 
cameras were set to a baseline of 0.3 meters. 
Table 2 lists the details of the camera settings 
used in this study. 

Table 2: Setting of the stereo camera. 
Setting Value 

Focal length [px] 20.78461 
Vertical viewing angle [°] 60 
Sensor size [mm] (32, 24) 
Number of pixels [px] (3840,2880) 
Frame rate [fps] 30 

3.5 Results 

Figure 6 illustrates the trajectory of the 
estimated camera position via ORB SLAM 
compared with the actual camera trajectory. 

Table 3 presents the trajectory of the camera 
position estimated using ORB SLAM compared 
with the actual camera trajectory evaluated using 
the absolute pose error (APE). APE is a metric 
used to quantitatively assess the error between the 
actual and estimated camera positions. Let 𝑥,

56 
represent the coordinates of the actual camera 
position at the 𝑖  frame and 𝑥,786  represent the 
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estimated camera coordinates. The APE was 
calculated using the following equation: 

𝐴𝑃𝐸 = ]𝒙,
56 − 𝒙,786] (7) 

 
Figure 6: Figure comparing the camera 

trajectories in a 3D coordinate system. The 
dotted line represents the trajectory estimated by 

ORB SLAM, whereas the blue line represents 
the actual trajectory. 

Table3: Summary of the absolute position error 
between the trajectory of the camera position 
estimated using ORB SLAM and the actual 

trajectory of the camera position. 
APE Value [m] 

Max value 0.298 
Average value 0.030 
Median value 0.020 
RMSE 0.033 

As shown in Equation (7), APE provides a 
quantitative measure of the difference between 
the actual and estimated positions, enabling an 
assessment of the accuracy of the ORB SLAM-
based trajectory estimation. 

The average APE for a construction site 

measuring approximately 60 m long and 50 m 
wide was 0.030 m. Significant errors were 
observed in the z-direction. 

Figure 7 illustrates the 3D point cloud prior to 
noise removal. Figure 7 shows the integrated 3D 
point cloud obtained after iterative ORB SLAM-
based self-localization and 3D point cloud 
generation using disparity images. To facilitate an 
accuracy comparison, Figure 7 was captured from 
the same viewpoint as the reference 3D model 
shown in Figure 2. Although the overall features 
of the model are discernible compared with the 
3D model in Figure 2, some noise remains, 
indicating that the results are not entirely accurate. 

 
Figure 7: Final 3D point cloud of the simulator. 

Finally, we present the results of noise removal 
using the k-NN method, which effectively 
cleaned the generated 3D point cloud of the entire 
construction site. The results are presented in 
Figure 8. The uneven surfaces of the building and 
overall shape and scale of the boxes are 
accurately represented. The process took 545.1 s, 
meeting the time requirement for generating the 
initial map, which was typically expected to be 
within 10 min. 
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Figure 8: 3D point cloud with noise removed. 

4. CONCLUSION AND 
RECOMMENDATION 

In this study, we developed and evaluated a 
real-time 3D mapping methodology tailored to 
dynamic environments at construction sites. This 
methodology employs a stereo camera affixed to 
a drone and integrates the ORB SLAM 
technology. The primary objective is to address 
the limitations of current methodologies in 
generating precise and dense 3D point clouds for 
applications such as automated crane operation, 
where prompt performance and adaptability to 
continuously evolving environments are essential. 

Recent advancements in 3D mapping 
techniques for construction automation rely 
predominantly on monocular cameras. However, 
these methods exhibit several inherent limitations. 
Monocular cameras cannot determine scale, 
which complicates the acquisition of precise 
distance information. In current methodologies, 
the camera is often mounted on the crane hook, 
which results in challenges such as reduced map 
accuracy owing to vibrations from the hook and a 
constrained field of view resulting from the fixed 
position of the camera. These physical 

impediments render these approaches unsuitable 
for scenarios that require high-density and real-
time data acquisition. To address these challenges, 
our method employs a stereo camera to determine 
the scale accurately alongside ORB SLAM for 
real-time self-localization and mapping.  

The proposed methodology comprises three 
primary stages. Initially, dense point clouds are 
generated by calculating disparity images 
obtained from a stereo camera affixed to the 
drone. This stereo camera captures depth 
information in real time, thereby addressing the 
limitations inherent in traditional monocular 
configurations. Subsequently, ORB SLAM is 
employed for self-localization by utilizing 
feature-based techniques to accurately estimate 
the position and orientation of the camera. These 
estimates facilitate the temporal integration of 
point clouds, culminating in a comprehensive 3D 
model of the environment. Finally, noise removal 
is executed using the k-NN method, which filters 
outliers by assessing the density of adjacent 
points. This process ensures that the final 3D map 
is dense and devoid of prevalent noise issues 
associated with image acquisition errors, 
disparities in estimation, and integration 
misalignments. 

We tested the effectiveness of the proposed 
approach in a simulated construction 
environment created using Unity. This 
environment features detailed scene elements, 
such as buildings, vehicles, and construction 
materials, that closely resemble a real 
construction site. A stereo camera with a 0.3-
meter baseline was mounted on a drone, which 
captured images while orbiting the site. The 
captured frames were processed in the ROS to 
generate disparity maps, estimate the pose of the 
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drone using ORB SLAM, and integrate the 
resulting 3D point clouds.  

The experimental results indicate that the 
proposed methodology can generate a highly 
accurate and dense 3D representation of a 
construction site in real time. The resulting map 
effectively captures the irregular surfaces of 
buildings, accurately reflects the scale and 
geometry of objects such as boxes and 
construction equipment and demonstrates 
minimal deviation in pose estimation when 
compared to the ground truth. An analysis of the 
APE confirmed that the average deviation 
remained within acceptable limits for practical 
applications, with a root mean square error 
(RMSE) of 0.033 m throughout the entire 
trajectory. Furthermore, noise filtering using the 
k-NN method significantly enhanced the clarity 
of the point cloud, culminating in a map that 
closely coincides with the actual structure while 
effectively eliminating extraneous points. 

In the future, we will focus on enhancing the 
adaptability of the system to dynamic 
environments. Our objective was to develop 
algorithms that selectively update only the 
regions of a 3D map where alterations transpire, 
thereby facilitating efficient real-time updates at 
continually evolving construction sites. 
Furthermore, we intend to broaden our validation 
efforts from existing simulation environments to 
real-world contexts to further augment the 
system’s practicality. 
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