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ABSTRACT 

Man-made structure extraction is essential for urban planning, environmental monitoring, and disaster 
management. Optical sensors often face limitations due to weather and lighting conditions; in 
comparison, synthetic aperture radar (SAR) provides consistent imaging in all environments. This study 
leveraged Polarimetric SAR (PolSAR) data and advanced scattering decomposition techniques to 
enhance the extraction of man-made structures. The methodology involved the collection of microwave 
scattering data from concrete blocks at various angles within an anechoic chamber, which was then used 
to train machine learning models. These models were subsequently applied to real-world satellite data 
from the Advanced Land Observing Satellite-2/Phased Array type L-band Synthetic Aperture Radar-2 
(ALOS-2/PALSAR-2) to ensure practical applicability of the approach. Scattering decomposition 
significantly improved the detection accuracy compared with using the original scattering data alone, 
offering a clearer identification of man-made structures. Incorporating the polarimetric orientation angle 
further enhances the classification accuracy, making it a valuable addition to the method. Our approach 
offers significant insights into the planning and management of sustainable man-made structures and 
resources. 

Keywords: Man-made structure extraction, Polarimetric SAR, Scattering decomposition, Machine 
learning, Polarimetric orientation angle 

 

1. INTRODUCTION 

The rapid growth of cities worldwide, 
particularly in densely populated areas, such as 

Asia, has led to serious challenges including 
insufficient infrastructure, environmental 
problems, and increased risks from natural 
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disasters. As cities expand, accurate and up-to-
date maps of urban areas have become essential 
for sustainable planning and disaster management 
(Kajimoto & Susaki, 2013a). However, 
conventional mapping methods often relying on 
Geographic Information Systems (GIS) and 
optical imagery can be slow to update and are 
limited by weather conditions, making them less 
effective in tracking rapid urban growth (Li et al., 
2016). 

In this context, synthetic aperture radar (SAR) 
has become a valuable tool for mapping man-
made structures. It provides high-resolution 
images under various light and weather 
conditions (Yamaguchi et al., 2020). Polarimetric 
SAR (PolSAR) adds to this capability with the 
use of multiple polarization channels that provide 
detailed information on the scattering properties 
of surfaces, which helps distinguish man-made 
structures from natural features (Niu & Ban, 
2012). Despite these advantages, interpreting 
PolSAR data is challenging because of complex 
backscattering in dense man-made structural 
areas, where interactions between different 
surfaces can complicate the analysis (Freeman & 
Durden, 1998; Shabou et al., 2012). 

Many studies have shown that PolSAR data 
are useful for the extraction and classification of 
urban areas. For example, Freeman and Durden 
(1998) developed a three-component scattering 
model to explain urban scattering patterns, 
whereas Yamaguchi et al. (2006) proposed a four-
component decomposition method to better 
classify scattering types. Kimura (2008) and Lee 
et al. (2000) also examined how polarimetric 
orientation angle (POA) shifts can reveal 
information on building orientations, helping to 
improve urban mapping accuracy. More recently, 

Kajimoto and Susaki (2013b) applied POA 
correction methods to estimate urban density, 
highlighting new ways to enhance urban mapping 
using PolSAR data. 

Building on this prior work, this study 
introduces a new method for extracting man-
made structures by combining PolSAR data using 
advanced scattering decomposition techniques. 
Our approach uses Yamaguchi’s four-component 
decomposition model along with POA estimation 
to improve the accuracy of artificial feature 
extraction (Yamaguchi et al., 2006). In addition, 
we incorporated a random forest (RF) classifier 
trained on experimental data from concrete 
blocks, which we applied to the Advanced Land 
Observing Satellite-2/Phased Array-type L-band 
Synthetic Aperture Radar-2 (ALOS-2/PALSAR-
2) satellite data. By integrating the POA and 
machine learning, our method aims to provide a 
more precise solution for mapping man-made 
structures (Ferretti et al., 2011). 

The rest of this paper is organized as follows. 
In Section 2, we explain the indices used in our 
methodology, including the scattering matrix (S-
matrix), coherency matrix (T-matrix), four-
component decomposition, POA estimation, K-
means clustering, and RF classification. Section 3 
describes the experimental and satellite datasets 
used in this study. Section 4 details the methods 
applied. In Section 5, we present and discuss the 
classification results. Finally, Section 6 presents 
conclusions and recommendations for future 
research. 

2. INDICES USED 

In this section, we discuss the various indices 
used in this study for man-made structure 
extraction and classification using Polarimetric 
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SAR (PolSAR) data. These indices include the 
scattering matrix (S-matrix), coherency matrix 
(T-matrix), four-component decomposition, POA 
estimation, K-means clustering, and the RF 
classification algorithm. Each index plays a 
crucial role in enhancing the accuracy of man-
made structure extraction and classification. 

2.1 Scattering Matrix (S-matrix) 

The scattering matrix (S-matrix) is 
fundamental for describing the scattering 
behavior of a target in PolSAR. It captures the 
complex amplitudes of the scattered field across 
different polarizations. The scattering matrix is 
fundamental for describing target scattering 
behavior in PolSAR and is commonly expressed 
as follows (Lee & Pottier, 2009): 

𝑆 = 	 $𝑆!! 𝑆!"
𝑆"! 𝑆""

% (1) 

Here, 𝑆!!  and 𝑆""  represent the co-polarized 
backscatter for horizontal and vertical 
polarizations, respectively, whereas 𝑆!"  and 
𝑆"!  represent the cross-polarized backscatter. 
For simplicity, 𝑆!" and 𝑆"! are assumed to be 
equivalent. This scattering matrix serves as the 
foundation for further decomposition and 
classification techniques in PolSAR analyses. 

2.2 Coherency Matrix (T-matrix) 

The coherency matrix 𝑇 derived from the 
scattering matrix represents the second-order 
statistics of the scattering mechanism, capturing 
power and correlation properties. The coherency 
matrix, introduced in the context of PolSAR data 
processing, is defined as follows (Cloude & 
Pottier, 1996):

𝑇 = '
𝑇## 𝑇#$ 𝑇#%
𝑇$# 𝑇$$ 𝑇$%
𝑇%# 𝑇%$ 𝑇%%

( =

⎝

⎜
⎛

〈|(!!)(""|#〉
$

〈((!!)	("")((!!.	("")∗〉
$

〈(𝑆!! + 𝑆"")𝑆∗!"〉
〈((!!)	("")∗((!!.	("")〉

$
〈|(!!.(""|#〉

$
〈(𝑆!! − 𝑆"")𝑆∗!"〉

〈(𝑆!! + 𝑆"")∗𝑆!"〉 〈(𝑆!! − 𝑆"")∗𝑆!"〉 〈2|𝑆!"|$〉 ⎠

⎟
⎞

 (2)

This matrix provides a comprehensive 
description of the scattering process by 
accounting for the coherency and phase 
differences between polarizations. Different 
elements of the matrix are related to specific 
scattering mechanisms: 𝑇##  represents surface 
scattering, 𝑇$$  represents double-bounce 
scattering, and 𝑇%% represents volume scattering 
(Yamaguchi et al., 2020). Other elements, such as 
𝑇#$, 𝑇#%, and 𝑇$%, represent additional scattering 
processes. 

2.3 Four-component Decomposition 

The four-component decomposition method 
divides the observed backscattering into four 

distinct components derived from the coherency 
matrix. When applied to a full PolSAR dataset, 
this method provides surface scattering power 
(Ps), double-bounce scattering power (Pd), 
volume scattering power (Pv), and helix 
scattering power (Ph) (Yamaguchi et al., 2006). 

To address the dependence on the POA, 
Yamaguchi et al. (2006) introduced a rotation of 
the coherency matrix based on the POA, helping 
to reduce the azimuthal effects on these 
components. Here, θ represents the POA, which 
indicates the orientation angle of the target 
structure relative to the radar’s line of sight. This 
rotation can be expressed as: 
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𝑇(𝜃) = 8
𝑇##(𝜃) 𝑇#$(𝜃) 𝑇#%(𝜃)
𝑇$#(𝜃) 𝑇$$(𝜃) 𝑇$%(𝜃)
𝑇%#(𝜃) 𝑇%$(𝜃) 𝑇%%(𝜃)

9 =

	:𝑅0(𝜃)<	1 ∙ 𝑇 ∙ 	𝑅0(𝜃)   (3) 

𝑅0(𝜃) is the rotation matrix defined as: 

𝑅0(𝜃) = 	'
1 0 0
0 𝑐𝑜𝑠2𝜃 𝑠𝑖𝑛2𝜃
0 −𝑠𝑖𝑛2𝜃 𝑐𝑜𝑠2𝜃

(  (4) 

This decomposition and rotation operation helps 
isolate the contributions from each scattering 
mechanism by aligning the coherency matrix 
with the POA. 

2.4 Polarimetric Orientation Angle (POA) 
Estimation 

The POA is critical for accurately representing 
the orientation angle of the target structure 
relative to the line-of-sight of the radar. The POA 
can be estimated using the following equation: 

𝜃 = #
2
tan.# H $34(5#%)

(5##).(5%%)
I , H− 6

2
≤ 𝜃 ≤ 6

2
I	 (5) 

Here, 𝑅𝑒 denotes the real part of the complex 
number, and 𝑇$$, 𝑇$%, and 𝑇%% are the elements 
of the coherency matrix. Incorporating POA into 
classification models enhances the accuracy of 
feature extraction for man-made structures by 
correcting the angular effects caused by the 
orientation of the structure (Kajimoto & Susaki, 
2013). 

The POA can be conceptualized as the angle 
of rotation around the radar’s line of sight. The 
transformation of a scattering matrix rotated by 
an orientation angle ξ is represented as: 

𝑆(ξ)

= 	$ 𝑐𝑜𝑠ξ 𝑠𝑖𝑛ξ
−𝑠𝑖𝑛ξ 𝑐𝑜𝑠ξ% $

𝑆!! 𝑆!"
𝑆"! 𝑆""

% $𝑐𝑜𝑠ξ −𝑠𝑖𝑛ξ
𝑠𝑖𝑛ξ 𝑐𝑜𝑠ξ % 

In media with reflection symmetry, such as flat 
horizontal surfaces, the POA is typically zero 
(Lee et al., 2000). However, in complex 
environments with steep terrain or inclined man-
made structures, the POA often deviates from 
zero because of non-horizontal surfaces, 
buildings, and bridges that are not aligned with 
the radar’s flight path (Lee et al., 2002). 
Accurately accounting for these variations is 
crucial for effective terrain modeling and feature 
classification, leading to more reliable results 
(Lee et al., 2002; Ainsworth et al., 2008). 

2.5 K-means Clustering 

The K-means clustering algorithm can be 
defined mathematically as follows: 

𝐽 = ∑ ∑ P𝑥7 − 𝜇8P
$9

7:#
;
8:#   (7) 

Here: 

𝑛: total number of data points in the dataset. 
𝐽: objective function to minimize. 
𝑘: number of clusters. 
𝑥7: data point. 
𝜇8: centroid of cluster 𝑖. 

K-means clustering was selected for its 
simplicity, efficiency, and ability to dynamically 
classify man-made and non-man-made structural 
areas in experimental datasets without the need 
for manual labelling. 

2.6 Random Forest Classification 

The RF algorithm was used as a machine 
learning classifier to categorize man-made 
structural features based on the indices discussed. 
It is an ensemble-learning method that constructs 
multiple decision trees during training and 
outputs the class, which is the mode of the classes 
(for classification) or the mean prediction (for 
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regression) of individual trees. This algorithm is 
particularly effective for handling high-
dimensional data and capturing complex 
interactions between features (Breiman, 2001). 

3. DATA 

3.1 Experimental PolSAR Data 

The experimental dataset comprises 
backscattering measurements at various 
orientation angles and distances recorded at the 
X-band frequency. These data were collected 
from 20–21 September 2011 using a fully 
polarimetric SAR system in an anechoic chamber 
at Niigata University. Polarizations HH, HV, VH, 
and VV are crucial for extracting and classifying 
man-made structures. These experimental data 
enhance the model accuracy by providing precise 
scattering characteristics specific to man-made 
areas. Measurements were conducted on concrete 
blocks of sizes scaled according to the law of 
similarity to ensure a realistic representation of 
real-world conditions. 

3.2 Advanced Land Observing Satellite-
2/Phased Array type L-band Synthetic 
Aperture Radar-2 (ALOS-2/PALSAR-2) 

In this study, we used the Advanced Land 
Observing Satellite-2/Phased Array-type L-band 
Synthetic Aperture Radar-2 (ALOS-2/PALSAR-
2) dataset, an advanced L-band (1.27 GHz) 
synthetic aperture radar system operated by the 
Japan Aerospace Exploration Agency (JAXA), to 
map large-scale man-made structures in Tokyo 
and Bangkok. Two specific datasets were 
employed: one acquired over Tokyo on May 7, 
2024, during an ascending orbit, and the other 

acquired over Bangkok on April 27, 2024. Each 
dataset offers a high spatial resolution of 6 m and 
includes crucial polarimetric data comprising 
amplitude and phase information, which are 
essential for distinguishing between man-made 
structures and natural surfaces. This distinction is 
made possible by the capability of the dataset to 
reveal surface characteristics, such as roughness 
and dielectric properties, which differ 
significantly between artificial and natural 
materials. 

The versatility of ALOS-2/PALSAR-2 in 
polarimetric modes (HH, HV, and VV) enhances 
its sensitivity to various surface types, making it 
particularly suitable for the detection and 
classification of man-made structures. These 
polarimetric modes provide comprehensive 
insights into surface reflections, as shown in Fig. 
2. The PolSAR image from Tokyo (Figure 2a) 
displays a color composite (Red: HH, Green: HV, 
Blue: VV), providing a clear visual distinction 
between the features related to man-made 
structures. Similarly, the Bangkok PolSAR image 
(Figure 2b) uses the same color composite to 
highlight the surface variations in areas 
containing artificial structures. Table 1 outlines 
the specific details of the PolSAR images used in 
this experiment and supports the methodology 
and results by clarifying the study area, 
acquisition dates, and off-nadir angles. These 
high-resolution polarimetric ALOS-2/PALSAR-2 
datasets effectively facilitate the analysis and 
mapping of man-made structures in complex 
urban environments.



 

Asian J. Geoinfo. 25   AJG-2411008-6 

 
Figure 1: Setup of the microwave scattering measurement experiment in an anechoic chamber at 

Niigata University. 

Table 1: Details of PolSAR images used for the experiment. 

City 
Observation date 
[yyyy/mm/dd] 

Off-nadir angle 

Tokyo 2024-05-07  25.0° 

Bangkok 2024-04-27 32.7° 

 

Figure 2: PolSAR images acquired with the ALOS2/PALSAR2: (a) PolSAR image in Tokyo (Red: 
HH, Green HV, Blue VV) and (b) PolSAR image in Bangkok (Red: HH, Green HV, Blue VV)

4. METHOD 

4.1 Training Dataset Preparation 

The training dataset for this study was derived 
from experimental PolSAR data measurements 
conducted at Niigata University, which included 

microwave scattering data collected from 
concrete blocks at various azimuth angles. The 
dataset includes approximately over 600,000 
pixels for both the non-man-made and man-made 
structural classes, ensuring a balanced 
representation and minimizing bias. Data 

(a) (b) 
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normalization techniques were applied to address 
imbalanced features. Initially, K-means 
clustering was employed to identify the natural 
groupings within the data, which were then used 
to label the man-made and non-man-made 
structural classes. These labeled data points 
served as the foundation for subsequent model 

training. Figure 3 illustrates an example of the 
clustering results from the X-band scattering 
experiment used to classify man-made structures. 
The values in brackets indicate the minimum and 
maximum backscattering intensity (in dB) 
observed in each polarization channel.

 min              max 

  
(a) [−72, −30 dB] (b) [−67, −31 dB] 

  

(c) [−71, −29 dB] (d) 

Figure 3: X-band scattering experiment clustering results for man-made structure classification (a) 
HH, (b) HV, (c) VV, and (d) classification (red: man-made, blue: non-man-made).

4.2 Classification Using Original Scatterings 

The initial step in our methodology involves 
the direct classification of man-made structural 
areas using the original PolSAR data scatterings: 
HV, VH, VV, and HH. These scatterings, 
representing the horizontal and vertical 
polarization states, contain vital information 
regarding the backscatter from various man-made 
structural features. The intensity of each pixel in 
these scatterings reflects the strength of the radar 
signal, which interacts with objects in the scene. 
An RF classifier was trained using these original 

data scatterings to establish a baseline for man-
made structure feature classification. This 
approach allowed us to evaluate the 
discriminative power of the original scatterings to 
distinguish between different man-made and non-
man-made structural classes without additional 
feature extraction. 

4.3 Classification Using Scattering 
Decomposition 

In the next phase, we applied the four-
component scattering decomposition technique 
based on Yamaguchi’s decomposition model to 
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PolSAR data. This technique decomposes the 
SAR signal into four scattering mechanisms: 
surface scattering (Ps), double-bounce scattering 
(Pd), volume scattering (Pv), and helix scattering 
(Ph). By using these decomposed components as 
features in our RF classifier, we aimed to improve 
the classification accuracy by capturing more 
detailed physical characteristics of man-made 
structural areas, which are often mixed and 
complex in nature. 

4.4 Classification Using Scattering 
Decomposition + POA 

The third stage of the methodology introduces 
an advanced classification technique that 
integrates scattering decomposition with the POA 

as an additional feature. Scattering 
decomposition techniques, such as Yamaguchi’s 
four-component model, decompose PolSAR data 
into distinct scattering mechanisms: Ps, Pd, Pv, 
and Ph. By incorporating the POA into the 
decomposition process, we aimed to correct for 
orientation-induced distortions, which are 
prevalent in man-made structural areas due to the 
varied alignment of the structure. The classifier, 
trained with Ps, Pd, Pv, Ph, and POA, is expected 
to yield more accurate man-made structure 
feature extraction by accounting for both the 
scattering characteristics and orientation of man-
made structural features. Figure 4 presents a 
flowchart of the proposed study, outlining the 
methodology followed at each stage.

 

Figure 4: Flowchart of the proposed study methodology.
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4.5 Hyperparameter Tuning 

The RF model used in the classification stage 
underwent hyperparameter tuning using a 
random-search approach. The adjusted primary 
hyperparameters were mtry (the number of 
variables randomly sampled as candidates at each 
split) and ntree (the number of trees in the forest). 
The tuning range for mtry was set between 2 and 
10, while for ntree, it was between 50 and 200. 
While increasing ntree can improve performance, 
it also increases computation time. In this study, 
mtry was set to 2, and ntree to 100, based on 
preliminary experiments to optimize model 
performance. 

4.6 Validation Method 

The classification results were validated by 
comparing the classification results from the 
Advanced Land Observing Satellite-2/Phased 
Array type L-band Synthetic Aperture Radar-2 
(ALOS-2/PALSAR-2), derived from man-made 
structural areas, with the built area class from the 
Sentinel-2 land cover dataset. Sentinel-2’s 
annually updated land-cover dataset was 
produced using deep learning AI models and a 
large training dataset (Karra et al., 2021). While 
Sentinel-2 includes several land-cover classes, 
we focused solely on the built area class to 
validate man-made structures, specifically 
targeting dense structures such as buildings and 
elevated constructions. 

Because the training dataset was based on the 
scattering characteristics of concrete blocks, 
which are highly sensitive to dense man-made 
structures, such as buildings, certain urban 
features, such as flat paved surfaces (e.g., roads 
and runways) or low-density urban areas, were 
initially underrepresented. To address this issue 

and refine our focus on higher-density structures, 
we manually excluded ground-level features such 
as roads, parking lots, and runways from the 
Sentinel-2 dataset. 

To reconcile the resolution differences 
between ALOS-2/PALSAR-2 (6 m) and Sentinel-
2 (10 m), we applied nearest-neighbor resampling 
to ensure pixel alignment for accurate 
comparison. 

As a cautionary note, it is important to 
consider potential errors in the Sentinel-2 land-
cover dataset, as land-cover maps may include 
classification inaccuracies. According to Karra et 
al. (2021), the Sentinel-2 land cover dataset 
achieved an overall accuracy of 85% across all 
ten classes of holdout validation tiles. In addition, 
a more detailed accuracy assessment per class is 
available across four regions (California, Costa 
Rica, Belgium, and Laos), with an error matrix of 
the estimated area proportions for each region, 
along with the user and producer accuracies. The 
study also computed the class area with 95% 
confidence error bounds based on the error matrix 
in each region. This serves as a reference for the 
expected accuracy of the Sentinel-2 dataset, 
which must be considered when interpreting our 
validation results. 

For the accuracy assessment in our study, we 
calculated the Overall Accuracy (OA), 
Producer’s Accuracy (PA), and User’s Accuracy 
(UA) for both man-made and non-man-made 
structures, with a focus on dense man-made 
features to enhance the classification accuracy 
compared with general man-made structure 
classifications. 

5. RESULTS AND DISCUSSION 

This study focuses on the extraction and 
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classification of man-made structures using 
Polarimetric Synthetic Aperture Radar (PolSAR) 
data to evaluate the performance of various 
classification techniques. The classification 
results were validated using an updated ground 
truth dataset from Sentinel-2, which provides 
high-resolution, 10-m land cover data for 2024 
(Karra et al., 2021). In this updated dataset, we 
manually excluded ground-level features, such as 
roads, runways, and parking lots, resulting in a 
significant improvement in the overall accuracy 
of the classification of dense, elevated structures 
compared with the previous “urban” category. 
Nevertheless, challenges persist, particularly in 
misclassifying areas with scattering from oriented 
targets, resulting in the occasional confusion 
between volume and double-bounce scattering. 

5.1 Comparative Analysis of Classification 
Approaches 

Several studies have explored the 
effectiveness of polarimetric decomposition 
methods for land cover classification. Wang et al. 
(2022) examined dryland crop classification 
using GF3 full-polarimetric SAR data, finding 
that a multi-component decomposition method 
achieved an overall accuracy of 88.37%. This 
underscores the advantage of leveraging multiple 
scattering mechanisms to improve classification. 
Similarly, Srivally et al. (2024) compared 
commonly used decomposition techniques, 
reporting overall accuracies of 79.6% and 81.9% 
for the Freeman–Durden and Yamaguchi methods, 
respectively. These results indicate that different 
decomposition techniques capture distinct 
scattering characteristics, affecting classification 
performance. However, most existing studies 
focus on general land cover classification rather 
than specifically extracting man-made structures. 

Our research aims to improve the accuracy of 
elevated man-made structure classification using 
PolSAR data. Many classification methods 
misinterpret open spaces such as paved surfaces, 
parking lots, and golf courses as built-up areas 
due to similar scattering properties. In contrast, 
our approach integrates scattering decomposition 
with Polarimetric Orientation Angle (POA) 
estimation to enhance the differentiation between 
dense, elevated urban structures and open, flat 
surfaces. 

Applying this method to man-made and non-
man-made land cover classification in Tokyo and 
Bangkok (2024), we achieved overall accuracies 
of 90.42% and 92.35%, respectively. These 
results demonstrate a significant improvement 
over conventional decomposition methods. The 
inclusion of POA helps account for structural 
orientation effects, which are often overlooked in 
traditional classification. This is particularly 
important for distinguishing high-rise buildings 
and dense urban infrastructure from paved areas 
that exhibit similar scattering behavior but lack 
vertical structures. 

To further validate our approach, we compared 
our results with high-resolution Sentinel-2 
reference data. Costa et al. (2021) showed that 
integrating ALOS-2/PALSAR-2 and Sentinel-2A 
data yielded an overall accuracy of 85.56%, while 
Sentinel-2A alone provided comparable results. 
Our findings align with this but offer a significant 
advantage in man-made structure classification. 
By integrating scattering decomposition with 
POA, our method reduces confusion between 
built-up areas and similar land cover types, 
making it highly effective for urban mapping, 
infrastructure monitoring, and disaster 
assessment. 
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5.2 Close-Up Analysis of Classification 
Accuracy Using Sentinel-2 Data 

To further validate the classification 
performance, we compare ALOS-2 PolSAR 
classification results with Sentinel-2 optical 
imagery, which serves as a high-resolution 
reference dataset. Figures 5 and 6 show a close-
up view of selected manmade structure areas in 
Tokyo and Bangkok, respectively, illustrating 
classification results obtained from our method 
alongside Sentinel-2 reference data. 

Figure 5 provides a detailed comparison of 
manmade structure classification in Tokyo. The 
proposed method effectively captures major man-
made structures and their spatial distribution, 
aligning well with the Sentinel-2 reference data, 
particularly in high-density urban zones. Notably, 
our classification approach demonstrates a clear 
distinction between vegetation and built-up areas, 
reducing misclassification of green spaces as 
manmade infrastructure. Additionally, the 
method accurately identifies open paved surfaces, 
such as large parking lots and sports fields, as 
non-manmade structures. This contrasts with the 
Sentinel-2 reference dataset, which classifies 

certain open areas, including sports complexes 
and racecourses, as built-up regions. 

Figure 6 presents a close-up comparison of 
manmade structure classification in Bangkok. 
The proposed method exhibits strong 
performance in distinguishing water bodies, and 
agricultures from manmade structure region. This 
enhanced differentiation is particularly beneficial 
in regions with complex hydrological networks, 
such as canal-dense areas. 

These comparisons highlight the advantages 
of PolSAR-based classification in capturing 
principle manmade features with improved 
precision. However, some discrepancies remain 
in mixed land cover regions where scattering 
similarities may lead to minor classification 
errors. While our method enhances manmade 
structure distinction, incorporating additional 
contextual information from multi-temporal SAR 
or optical sources could further refine 
classification accuracy. Future research could 
explore deep learning-based fusion techniques to 
enhance manmade structure extraction and 
reduce classification ambiguities.

 
Figure 5: Close-up comparison of manmade structure classification in Tokyo (Left: Sentinel-2 

reference, Right: ALOS-2 classification). 
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Figure 6: Close-up comparison of manmade structure classification in Bangkok (Left: Sentinel-2 

reference, Right: ALOS-2 classification. 

 

Figure 7: Overall accuracy (OA) for man-made structure classification in Tokyo and Bangkok using 
the three classification approaches  

 

Figure 8: Producer’s accuracy (PA) for each classification method in Tokyo and Bangkok 
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Figure 9: User’s accuracy (UA) for each classification method in Tokyo and Bangkok.

5.3 Classification Approaches 

The classification of the man-made structural 
areas was performed using three different 
approaches: 

a) Original scatterings: This method uses the 
original PolSAR data without decomposition. 

b) Scattering decomposition: This approach 
leverages scattering decomposition methods 
to improve classification. 

c) Scattering decomposition combined with 
POA: This method integrates the POA with 
scattering decomposition for further accuracy 
improvements. 

These methods were evaluated in two urban 
environments, Tokyo and Bangkok, using the PA, 
UA, and OA metrics. These metrics offer a 
comprehensive view of the effectiveness of each 
method in identifying man-made structures. 

5.4 Results Summary 

In Tokyo, the original scattering approach 
achieved an OA of 79.16%. By employing 
scattering decomposition, the OA improved to 
87.04%. The highest accuracy was attained with 
the integration of the POA, yielding an OA of 
90.42%. This demonstrates the effectiveness of 

the POA in enhancing the classification 
performance. 

Similarly, in Bangkok, the original scattering 
method yielded an OA of 83.65%, which 
increased to 86.31% with the scattering 
decomposition. The best results were observed 
with scattering decomposition combined with the 
POA, which achieved an OA of 92.35%. This 
significant improvement highlights the strength 
of the combined method for accurately 
classifying man-made structures in complex 
urban landscapes. 

5.5 Detailed Method Analysis 

In this section, we analyze the classification 
results obtained from different methodological 
approaches. The effectiveness of each approach is 
assessed based on Overall Accuracy (OA) and its 
ability to distinguish man-made structures from 
non-man-made environments. 

5.5.1 Baseline Classification Using Original 
Scatterings 

The baseline method utilizes the original 
PolSAR scattering intensities (HH, HV, VV) 
without any additional processing. The 
classification results achieved Overall Accuracies 
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(OAs) of 79.16% in Tokyo and 83.65% in 
Bangkok. However, misclassifications were 
observed, primarily when non-human-made 
features, such as dense vegetation and water 
bodies, were incorrectly classified as man-made 
structures. This indicates that relying solely on 
original scattering information may not be 
sufficient for precise urban extraction. 

5.5.2 Improvement with Scattering 
Decomposition 

To enhance classification performance, 
scattering decomposition was applied to separate 
different scattering mechanisms. This method 
significantly improved accuracy, achieving OAs 
of 87.04% for Tokyo and 86.31% for Bangkok. 
The decomposition allowed better differentiation 
between urban structures and natural features, 
reducing misclassification errors observed in the 
baseline method. The improvement highlights the 
importance of utilizing scattering mechanisms for 
more reliable classification. 

5.5.3 Enhanced Accuracy with Scattering 
Decomposition and POA Integration 

Further refinement was achieved by 
incorporating Polarimetric Orientation Angle 
(POA) into the scattering decomposition process. 
This approach provided the highest classification 
accuracy, with OAs reaching 90.42% for Tokyo 
and 92.35% for Bangkok. The inclusion of POA 
helped capture additional orientation-related 
information, leading to improved Producer’s 
Accuracy (PA) and User’s Accuracy (UA) for 
man-made structures. This demonstrates that 
integrating orientation parameters enhances the 
robustness of manmade structure extraction. 

5.6 Observations from Difference Maps 

Figures 11a and c show the differences 
between the original scattering and scattering 
decomposition approaches. The extensive blue 
areas indicate that scattering decomposition could 
detect more man-made structures than the 
original scattering. However, this approach tends 
to overestimate the presence of man-made 
features, as it may incorrectly classify some 
natural vegetation as man-made areas. 

Figures 11b and d show the difference between 
the scattering decomposition and the 
decomposition with POA. The inclusion of POA 
helps refine the classification by reducing the 
overestimation of man-made structures, as 
indicated by the decrease in blue areas. Moreover, 
the red areas in these figures highlight newly 
identified man-made structures that were 
previously missed when using the scattering 
decomposition method alone. 

POA adjustment allows for a better 
differentiation between vegetation and man-made 
features, particularly in areas where natural and 
man-made elements are closely intertwined. This 
improved accuracy is evidenced by the reduction 
in the blue (overestimated man-made) areas and 
the appearance of the red (newly detected man-
made) areas in Figures 11b and d, respectively. 

Overall, the incorporation of POA in the 
decomposition using the POA approach leads to a 
more balanced and precise classification, better 
distinguishing between complex man-made and 
natural features compared with the scattering 
decomposition method. This demonstrates the 
value of utilizing POA information to enhance the 
accuracy of man-made structural mapping using 
PolSAR data.
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 10: Results of the man-made structure classification results for Tokyo and Bangkok. The panels 
(a) and (d) show man-made structure classification using the original scatterings, (b) and (e) display 
man-made structure classification results using scattering decomposition, while (c) and (f) illustrate 

the classification results obtained using the proposed method, which combines scattering 
decomposition with the polarimetric orientation angle (POA). 
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(c) (d) 
Figure 11: Difference maps for Tokyo and Bangkok areas: a) Difference map between original 

scatterings and scattering decomposition for Tokyo, b) Difference map between scattering 
decomposition and decomposition with POA for Tokyo, c) Difference map between original 
scatterings and scattering decomposition for Bangkok, d) Difference map between scattering 

decomposition and decomposition with POA for Bangkok.

5.7 Analysis of Misclassified Areas Using 
Sentinel-2 Land Cover Data 

To better understand the limitations of our 
PolSAR classification method, we compared 
misclassified areas with Sentinel-2 land-cover 

classes. This analysis revealed that certain types 
of man-made structures, such as roads, parking 
lots, and industrial zones, are often misclassified 
as non-man-made. This misclassification 
occurred because these areas can exhibit 
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scattering characteristics similar to those of 
natural surfaces, leading to confusion during 
classification. 

Specifically, flat paved surfaces typically 
produce surface scattering due to their 
smoothness, which can sometimes resemble 
reflections from natural areas. By contrast, rough 
or uneven surfaces, even when bare, may produce 
volume scattering, further complicating the 
differentiation between man-made and natural 
structures in polarimetric SAR data. 

This finding highlights a limitation of our 
approach, as current scattering decomposition 
and POA-based methods may not have the 
specificity required to distinguish between certain 
man-made and natural structures. These results 
suggest that incorporating additional polarization 
metrics or hybrid models with machine learning 
techniques could enhance the classification 
accuracy, particularly for identifying flat surfaces 
that might otherwise be misinterpreted as non-
man-made areas.

 (a)  (b) 

 (c)  (d) 

  

Figure 12: Close-up of the misclassification error, (a) misclassification error of the proposed method, 
(b) misclassification error using original scatterings, (c) misclassification error using scattering 

decompositions, and (d) optical reference from Google Earth.

5.8 Error Analysis and Future Improvements 

Figure 12 illustrates examples of the 
misclassification errors in the different 

classification methods for the Tokyo area, 
specifically around Shinjuku Gyoen National 
Garden, Meiji Jingu Shrine, and Yoyogi Park. A 
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recurring issue is the confusion between volume 
scattering (Pv), typically associated with 
vegetation, and double-bounce scattering (Pd), 
which is characteristic of man-made structures. 
This misclassification is particularly noticeable in 
mixed-use zones and flat open surfaces. 

Future research could explore incorporating 
additional polarization metrics or integrating 
machine learning techniques, such as deep 
learning, to further enhance the classification 
accuracy, particularly for differentiating man-
made structures on flat surfaces. Although the 
POA-based method significantly improves 
classification, further refinement is necessary to 
address these specific misclassifications. 

6. CONCLUSION AND 
RECOMMENDATION 

This study explored various approaches for 
identifying man-made structures using 
Polarimetric Synthetic Aperture Radar (PolSAR) 
data and compared classification methods based 
on original scattering, scattering decomposition, 
and a combination of scattering decomposition 
and POA estimation. Although our method 
showed some improvements in accuracy, 
challenges remain in understanding the scattering 
behavior of man-made objects. 

We validated our classification results against 
Advanced Land Observing Satellite-2/Phased 
Array-type L-band Synthetic Aperture Radar-2 
(ALOS-2/PALSAR-2) data and the Sentinel-2 
land-cover dataset, which focuses on dense 
human-made structures and provides a robust 
reference for evaluation. The manual exclusion of 
ground-level features, such as roads and parking 
lots, enabled a more precise assessment of our 
target structure. 

The study findings include: 

• Misclassification of Vegetated Areas: 
Confusion between volume and double-
bounce scattering led to the occasional 
mislabeling of parks and forests as man-made 
structures. 

• Enhanced Detection of Elevated Structure: 
While the original scatterings served as a 
baseline, scattering decomposition and POA 
estimation significantly improved the 
accuracy in identifying oriented structures 
such as buildings. 

• Focused Detection of Dense and Elevated 
Structure: The method focused on dense, 
elevated structures, such as buildings and 
bridges, provides an effective approach for 
mapping man-made features. Roads and flat 
surfaces, which have lower-density signatures, 
are often not classified, enhancing the ability 
of the model to identify more significant 
infrastructure for urban planning. 

Applying a mode or majority filter can help 
reduce noise and clarify the representations of 
man-made structures. This study confirms the 
value of advanced classification techniques in 
urban planning and infrastructure management, 
in which focusing on dense, elevated structures 
supports practical decision-making. 

Future research can further enhance these 
results by incorporating a multi-frequency 
analysis and expanding the training datasets to 
include both dense and flat structures, creating a 
comprehensive classification approach. This 
approach enhances the accurate extraction of 
man-made structures from PolSAR data, 
providing vital support for effective man-made 
structure mapping, which is essential for 
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developing resilient and sustainable cities. 
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