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ABSTRACT 

A canopy height model (CHM) is crucial for effective forest resource assessment, which 
requires accurate digital surface models (DSMs) during leaf-on periods.  This study 
addresses the challenge of constructing comprehensive CHMs in regions such as Japan, 
where LiDAR data is predominantly collected in leaf-off seasons. We introduce a novel 
approach to estimate leaf-on DSMs using late fall LiDAR data, overcoming the 
limitations of the leaf-off conditions. Our method applies a spatial filtering operation to 
identify leaf-off grids based on statistical thresholds, followed by a Savitzky-Golay 
smoothing filter and a local maximum operation for DSM estimation. This innovative 
technique significantly improved the mean absolute difference (MAD) in DSM estimates, 
reducing it from 3.2 meters in leaf-off conditions to 1.19 meters for estimated leaf-on 
conditions. These results demonstrate our approach's potential for year-round forest 
monitoring and accurate resource assessment, despite the seasonal constraints in LiDAR 
data collection. 
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1. INTRODUCTION 

Forest canopy height information is a 
fundamental parameter in forest 
management and carbon emission 
calculation. Accurate forest height 
information is important for 
understanding changes in global impacts 
on forest ecosystems (Pan et al., 2011). 
The forest canopy height, a significant 

parameter in the vertical structure of 
forests, has been established as a pivotal 
macroscopic indicator reflecting forest 
carbon stocks (Zhao et al., 2022). Hence, 
there is a genuine need for precise 
quantification of forest canopy height on a 
large scale in contemporary global carbon 
balance studies (Giri et al., 2011). Forest 
canopy height information can be 
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collected using traditional field surveys, 
satellite images, and light detection and 
ranging (LiDAR) technology (Chave et al., 
2014; Illarionova et al., 2022; Li Wang, et 
al., 2020; Lechner et al., 2020; and Guo et 
al., 2020). Conducting traditional field 
surveys is demanding in terms of labor and 
time (Chave et al., 2014). The main 
advantage of LiDAR measurement lies in 
its accuracy to capture forest vertical-
structure parameters under various 
conditions, compared to satellite images 
(Campbell et al., 2021). LiDAR is 
presently acknowledged as the most 
precise method for measuring and 
determining canopy heights (Coops et al., 
2021). LiDAR operates by actively 
emitting laser pulses, relying on the 
penetration of these pulses to capture 
three-dimensional point cloud data of 
vegetation with structural details (Lefsky 
et al., 2002). Leveraging LiDAR's 
capacity to capture multiple returns and 
penetrate forested areas, it enables the 
generation of both a Digital Elevation 
Model (DEM) and a Digital Surface 
Model (DSM). DEM is a three-
dimensional representation of the ground 
surface, excluding above-ground features 
such as buildings and trees. DSM includes 
information on above-ground features 
such as buildings and trees (Song et al., 
2023). Canopy Height Models (CHMs) 
represent the height of trees above the 
ground topography. Widely used in 
diverse forestry applications, CHMs play 
a crucial role in tasks such as monitoring 
vegetation, computing biomass, and 

estimating the leaf area index (Hutayanon 
et al., 2023).  The generation of CHM 
involves subtracting a DEM from a DSM. 
In Japan, airborne LiDAR observations 
are often conducted during seasons when 
trees shed their leaves (leaf-off), such as 
late fall or winter, to acquire ground 
surface information. However, when 
LiDAR data is collected in late fall, the 
detection of the top of the forest canopy 
may be incomplete, leading to potential 
underestimation of the CHM. 
Nevertheless, the challenge arises in 
generating a CHM from LiDAR data 
during these leaf-off seasons due to the 
incomplete canopy detection. UAVs play a 
crucial role in forestry, such as mapping 
forest structures (Zhou et al., 2023; 
Štroner et al., 2023), measuring tree 
heights, evaluating tree pruning (Johansen 
et al., 2018), conducting comprehensive 
forest inventories (Wallace et al., 2012), 
and performing various other essential 
functions in the field (Hartley et al., 2020 
and Hu et al., 2020). Cao et al. (2019) 
found that forest structures in Eastern 
China were effectively monitored using a 
multi-rotor GV1300 equipped with a 
Velodyne Puck VLP-16 laser scanner. 
Authors in (Wallace et al., 2016) observed 
forest structure using a Canon 550D 
digital SLR camera and an Ibeo LUX laser 
scanner mounted on a Droidworx Skyjib 
octocopter. (Johansen et al. 2018) 
investigated tree crop feature extraction 
with a Parrot Sequoia sensor on a 3DR 
Solo quadcopter, assessing pruning effects 
on 189 trees in an Australian lychee 
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orchard. Forest inventory applications in 
(Wallace et al., 2012) employed a multi-
rotor VTOL UAV OctoCopter 
Droidworx/Microcopter AD-8 with an 
Ibeo LUX laser scanner. In Hartley et al. 
(2020), a young forestry trial survey in 
New Zealand utilized UAV laser scanning 
and SfM methods, incorporating a Lidar 
USA Snoopy V-series system and DJI 
Matrice 600 Pro UAV. Hu et al. (2020) 
employed a DJI Matrice 210 UAV for 
forestry applications, integrating four laser 
scanners—RIEGL VUX-1 UAV, RIEGL 
miniVUX-1 UAV, HESAI Pandar40, and 
Velodyne Puck LITE—showcasing the 
diverse applications of UAVs in forestry 
research. 

In Zhou et al. (2023), the study 
investigated how canopy conditions (leaf-
on/leaf-off) affect the accuracy of the Ice, 
Cloud, and Land Elevation Satellite-2 
(ICESat-2) forest height estimation. 
Results reveal better consistency between 
ICESat-2 and airborne LiDAR terrain 
heights under leaf-off conditions. 
Combining ICESat-2 data from both leaf-
on and leaf-off seasons improves forest 
height modeling accuracy, especially 
when excluding low-quality samples. 
Štroner et al. (2023) compared the 
LiDAR-UAV (DJI Zenmuse L1) and 
Photogrammetric-UAV (DJI Zenmuse P1) 
systems in a leaf-off forest setting. While 
photogrammetric data exhibited better 
elevation accuracy, LiDAR provided 
superior coverage, emphasizing its 
effectiveness in dense vegetation. The 
importance of using multiple returns in 

LiDAR data processing was highlighted, 
particularly in areas with high branch 
density. 

The local maximum (LM) algorithm, 
which begins by identifying individual 
trees through the detection of maxima, 
ideally represents treetops. These maxima 
are determined based on both Canopy 
Height Model (CHM) values and 
brightness values (Ke et al., 2011 and 
Tochon et al., 2015). Challenges arise in 
defining the search radius for local 
maxima due to factors such as pixel size, 
average crown diameter, and the 
asymmetrical arrangement of tree crowns 
around a central point in reality 
(Dietenberger et al., 2023). To improve 
LM performance, smoothing filters can 
reduce unwanted noise within the maxima 
(Workie et al. 2017, Erikson et al., 2005, 
Hirschmugl et al.,2007, Ottoy et al., 2022). 
Wulder et al. (2000) found that LM 
filtering depends on tree size, distribution, 
and image spatial resolution, with variable 
window-size techniques reducing errors, 
especially for larger trees. 

In this study, a variable window that 
dynamically allocates window sizes based 
on local height for each grid, was 
employed to address issues in the LM 
algorithm. 

The main objective of this research is to 
generate an accurate DSM from leaf-off 
data to improve the overall accuracy of the 
forest canopy height model in a mixed 
forest. To enhance the usability of existing 
leaf-off LiDAR data for forest modeling. 
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We propose a method that utilizes raster 
DSM data, divided into two categories: 
leaf-off and leaf-on condition grids. To 
reduce commission errors and enhance the 
accuracy of LM performance, we have 
proposed an LM algorithm method 
specifically for leaf-off grids while 
applying a smoothing filter (a Modified 
Savitzky-Golay) for leaf-on grids. In 
addition, the proposed method was 
evaluated using leaf-on condition 
experimental data acquired in August. 

2. DATA AND METHODS 

2.1 Experimental setup 

The field experiment was conducted at 
Gohen-no-mizube park along the Shinano 
River in Ojiya-shi, Niigata Prefecture, 
located on the island of Honshū on the 
coast of the Sea of Japan. The leaf-on data, 
gathered in August 2022, deliver 
comprehensive insights into the vegetative 
cover, offering critical details about the 
height and density of the forested area. In 
contrast, the leaf-off data, obtained in 
December 2022, complements this by 

capturing a different perspective during a 
period when the vegetation sheds its 
leaves. The dominant tree species were 
False Acacia. The DJI Zenmuse L1 
represents a cutting-edge laser scanner 
that integrates data from both an RGB 
sensor and an Inertial Measurement Unit 
(IMU) within a stabilized 3-axis gimbal. 
This innovative setup allows for the 
simultaneous capture of synchronized 
point clouds and images, enabling the 
creation of vivid, true-color point clouds 
derived from the RGB sensor. Operating at 
a wavelength of 905 nm and a frequency 
of 48 kHz, this laser scanner provides 
precise data when mounted on the DJI 
Matrice 300 drone. The details of the 
measurement setup are shown in Figure 1. 
A map of the study area is shown in Figure 
1(a). In Figure 1(b), the light blue 
rectangle indicates the location of the leaf-
on and leaf-off data. Figures 1(c) and 1(d) 
show the DJI Matrice 300 drone and DJI 
Zenmuse L1 lidar sensor, respectively, 
used in this study. The specifications of the 
experimental setup are listed in Table I.

 

Figure 1: Experimental setup: (a) Map of study area; (b) data used in this study; (c) DJI 
Matrice 300 drone; (d) DJI Zenmuse L1 sensor.

Table I: Experimental setup. 
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2.2 LiDAR point cloud data to raster 
DSM generation 

Various software is available to 
generate DSM and DEM from different 
data sources.  In this study, DSMs were 
generated from LiDAR point cloud (leaf-
off) and leaf-on (reference). The DSM is 
computed by the highest point measured 
in each pixel. In the generation of DSM 
and DEM from LiDAR point cloud data, a 
filtering strategy was implemented 
wherein values greater than -99999 were 
designated for DSM, and values less than 
99999 were assigned to DEM. This 
delineation was encoded into the C++ 
source code to facilitate data processing. 
The threshold values of -99999 and 99999 
are commonly employed as placeholders 
to signify 'No-Data' within geographical 
data processing. By establishing such 
thresholds, the goal is to effectively 
exclude these No-Data values from the 
calculations that produce the DSM and 
DEM, ensuring the accuracy and 
reliability of the resulting models. Point 
cloud data is converted to raster data. The 
values of the raster cells were set to the 
height of the highest point within each cell. 

If no point lies within a cell, the raster 
value was left empty (no data). Generating 
a DSM (DEM) with a small grid size, such 
as 0.1 m, results in "No-Data" grids that do 
not contain any points. On the other hand, 
increasing the grid size reduces "No-Data" 
grids, but ground surface or tree shape 
information is lost. Therefore, we 
generated DSMs from leaf-on and leaf-off 
point clouds by varying the grid size from 
0.1 m to 5 m and determined the grid size 
for analysis based on the Mean Absolute 
Difference (MAD) of both DSMs and the 
number of points in the grid. 

2.3 Extraction of leaf-off grids 

We employed a statistical approach to 
extract grids to apply estimation processes. 
In this study, it is assumed that a tree 
crown surface in leaf-on is very smooth, 
but the surface of leaf-off trees is very 
rough. A standard deviation of a DSM 
value in leaf-on areas is expected to be low. 
In contrast, it is expected that the standard 
deviation of a DSM value in leaf-off areas 
might be high. Leaf-off grids can be 
defined using local standard deviation. 
Therefore, to discriminate between grids 
corresponding to both leaf-on and leaf-off 
conditions, we sampled data from local 
standard deviation values of the DSM, 
which were calculated with various 
window sizes. In the literature, the 
utilization of the standard deviation in the 
calculation of sigma clipping has been 
highlighted as a method for identifying 
cloud cover and extracting clear sky 
radiances (Coakley et al., 1982). The 

ValueDescription

DJI Matrice 300 RTKPlatform
80 mFlight attitude

10 m/sFlight speed
9 minFlight time

DJI Zenmuse L1LiDAR Sensor
152 × 110 × 169 mmDimensions

930 ± 10 gWeight

450 m @ 80% reflectivity,
190 m @ 10% reflectivityRange

Multiple return: max. 480,000 pts/s
/repetitivePoint data rate/Scan mode

Horizontal: 10 cm @50 m,
Vertical: 5 cm @50 mPositional Accuracy

3 cm @100 mRanging Accuracy
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standard deviation was calculated using 
equation (1). 

𝜎!" = #∑ ∑ $%!"#	%"&&%̅!%(
'(/'

&*+(/'
(/'
#*+(/'

(*)'
						(1) 

Here, 𝑊  is the window size; 
𝑥!,-,",/ 	 is the grid value at position 
(𝑖 + 𝑘, 𝑗 + 𝑙)	 within the local window;  
𝑥̅!" is the mean average grid value within 
the local window centered at (𝑖, 𝑗), and 𝜎 
is the standard deviation. 

After the computation, distinct 
standard deviation threshold values were 
determined for leaf-off and leaf-on 
conditions. 

2.4 Proposed DSM generation method 

For the grids extracted by the process 
described in the previous section, the 
estimated DSM value was calculated 
using modified Savitzky-Golay (MSG) 
and Local Maximum (LM) algorithms. 
Figure 2 shows the data flow diagram of 
the estimation of the leaf-on DSM task 

framework of this study. The smoothing 
filter is applied only in leaf-on grids, while 
leaf-off grids and canopy gap grids are 
excluded from the MSG calculation, so it 
is expected to reduce the canopy gap area. 
It is expected that the data sets may 
provide more helpful information in 
predicting tree growth and less 
underestimated productivity. 

The LM filtering method was applied 
to the leaf-off grids, while the MSG 
smoothing filter was used for the leaf-on 
grids around leaf-off grids. LM is a 
technique for calculating the highest value 
of a grid based on the number of 
calculation grid cells (window size). It 
assigns the output cell value by taking the 
highest value of the calculation window 
size in an image to generate new values. If 
DSM is generated from the LiDAR data in 
leaf-off conditions, it may represent tree 
trunks and branches, and thus the LM 
value may be expected to represent tree 
crown surfaces.

 

Figure 2: Data flow diagram of estimation of leaf-on DSM task framework.
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2.4.1 Savitzky-Golay data smoothing 
filtering and local maximum 

A Savitzky-Golay (SG) filter is a digital 
filter that can be applied to a set of digital 
data points for the purpose of smoothing 
the data, that is, to increase and decrease 
data without greatly distorting the data. 
The SG filter is a type of digital filter used 
primarily for data smoothing, fitting a 
low-order polynomial by the method of 
least squares to a successive subset of 
adjacent data points (Savitzky et al., 1964). 
The key idea is that the smoothed value 
𝑌∗ in the point 𝐶! is obtained by taking 
an average of the neighboring data. 
Caused by the smoothing, the risk exists to 
overestimate the canopy gap area. The 
overall equation for the simplified 
quadratic surface applied to smooth DSM 
data can be expressed as follows (Chen et 
al., 2004). 

𝑌"∗ =
∑ 𝐶!𝑌",!!12
!1&2

𝑁  (2) 

Here, 𝑌	is the original data value, 𝑌∗ 
is the smoothed value, 𝐶!  is the 
coefficient for the 𝑖 th data value of the 
filter (smoothing window), and 𝑁 is the 
number of convoluting integers and is 
equal to the smoothing window (2𝑀 + 1). 
The index 𝑗 is the running index of the 
original ordinate data. The smoothing 
array (filter size) consists of 2𝑀 + 1 
points, where 𝑚 is the half-width of the 
smoothing window. 

In this study, a quadratic surface is used 
for data smoothing. In order to minimize 
overestimation, a smoothing filter is used 

based on extraction from leaf-off grids. A 
Savitzky–Golay filter is applied for 
extracted leaf-on grids around leaf-off 
grids. It is called a Modified Savitzky–
Golay (MSG) filter. It is expected that 
there will be less overestimation in the 
canopy gap area. MSG filter functions 
through a process of local least squares 
approximation to effectively filter the 
noise signal (Schafer et al., 2011). The 
local polynomial is mathematically 
represented as follows, where a data frame 
encompasses a total of 2𝑀 + 1  sample 
points centered at 𝑛 = 0: 

𝑝(𝑛) = ;𝑎-𝑛-
3

-14

 (3) 

where 𝑁(𝑁 ≤ 2𝑀 + 1) is the power of 
the polynomial.  

The general form of an MSG filter is 
based on fitting a polynomial to the data 
with a moving window. The equation for a 
quadratic surface in the context of the 
modified MSG filter can be expressed as 
follows: 

𝑍 = 𝑎𝑣5 + 𝑏𝑣 + 𝑐𝑤5 + 𝑑𝑤 + 𝑒 (4) 

where Z is the estimated elevation value, 
and 𝑣  and 𝑤  represent the coordinates 
in the 𝑥  and 𝑦 directions, respectively. 
The coefficients 𝑎 , 𝑏 , 𝑐 , 𝑑  and 𝑒  are 
determined by the filter based on the data 
within the moving window. The MSG 
filter uses linear algebra to solve the 
system of equations formed by the 
polynomial terms and the observed 
elevation values within the calculation 
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window. 

LM algorithm was introduced to detect 
treetops. The main problem encountered 
when using LM to detect treetops is that 
non-treetop LM are incorrectly classified 
as treetops. LM is a method to estimate 
tree heights based on single tree 
identification. A common technique used 
to identify tree locations on 
high/resolution optical images uses a LM 
algorithm with a static-sized, user 
specified, moving window, commonly 
3x3, 5x5, 7x7, 9x9 and 11x11 pixels, 
depending also on the pixel size (Nieman 
et al., 1998 and Gougen et al., 2002). 

2.5 Evaluation of the proposed model 

In this study, the mean absolute 
difference (MAD) is calculated to evaluate 
the proposed method’s results. The 
difference between the reference DSM 
and estimated DSM is evaluated based on 
the MAD, which was calculated as: 

𝑀𝐴𝐷 =
1
𝑛;

|𝑥! − 𝑦!|
6

!17

 (5) 

Here, 𝑥! 	 and 𝑦!  are the values of the 
estimated and measured DSM data, and n 
is the total amount of data. 

3. RESULTS 

3.1 Generation of DSM and DEM 

The DSMs were generated with grid 
sizes of 0.1, 0.2, 0.25, 0.5, 1.0, 1.5, 2.0, 3.0, 
4.0, and 5.0 meters. The MAD values were 
calculated for each generated DSM, and 
the results are shown in Figure 3. The 
MAD values for DSMs with grid sizes 
greater than 1.0 meter were nearly 
constant, ranging from 1.35 meters to 0.65 
meters. This indicates that DSMs with grid 
sizes greater than 1.0 meter could not 
capture the leaf-off information. For data 
with grid sizes of 0.1, 0.2, 0.25, 0.5, and 
1.0 meters, the point grid ratios were 
calculated. The results are listed in Table 
II. For this study, we used a grid size of 0.2 
m instead of 0.1 m, which would have 
resulted in a point count in the grid of less 
than 10 (the number of points in the grid 
was 22 with a 0.2 m grid). A grid size of 
0.2 meters and a MAD value of 3.2 meters 
were chosen to generate both DSMs. 

Figure 4 shows (a) the reference DSM 
data with a resolution of 0.2 m and (b) the 
leaf-off DSM data, respectively. The 
process involved analyzing the number of 
points in each grid, as well as the ratio of 
"No-Data" grids in the target area and the 
mean absolute difference (MAD).



 Article 

Asian J. Geoinfo. 24   AJG-2402002-9 

 

Figure 3: Mean Absolute Differences (MAD) between DSMs generated from point 
clouds of both leaf-on and leaf-off observations. 

 

Table II. Mean number of points in the grid with various grid sizes. 

  

 

 

Figure 4: Generated DSM and DEM results with grid size of 0.2 m; (a) Reference leaf-
on DSM in August, (b) leaf-off DSM data in December. 
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Figure 5: (a) red colored area is leaf-off grids for the applying the estimation method, 
(b) leaf-on grids (green colored) to excluded from MSG filter.

3.2 Determination of leaf-on and leaf-
off grids 

Figure 5 shows the results of the leaf-
on and leaf-off grids. Based on the leaf-off 
DSM, we computed the local standard 
deviation of the image data using different 
window sizes (3x3, 5x5, and 7x7). 

The extraction of leaf-off grids was 
contingent on factors such as window size, 
tree crown size, tree distributions, and a 
specified threshold. In the present study, 
the threshold was established using both 
the MAD values and visual comparison 
with the extracted grids against the leaf-off 
DSM and reference DSM. The study, 
which relies on the standard deviation for 
parameter optimization, has identified that 
a 5x5 window size and a threshold of 2.0 
meters are optimal for extracting leaf-off 
grids in the area.  By selecting a 5x5 
window size, the study ensures a balanced 
consideration of neighboring pixels when 
computing local differences, thus 
capturing meaningful spatial relationships 
without excessive smoothing or 
oversimplification. Additionally, the 

threshold of 2.0 meters provides a 
reasonable criterion for identifying 
significant changes in elevation data. This 
optimal parameter combination reflects a 
careful balance between spatial resolution 
and sensitivity to variations in the dataset. 

3.3 Results of Estimated DSM in leaf-on 
season 

Figure 6 shows the results of (a) Leaf-
on DSM in August, (b) leaf-off DSM data 
in December, and (c) the result of 
estimated leaf-on DSM in December. The 
estimated DSMs were generated through 
Modified Savitzky-Golay filtering and 
LM processes, employing various window 
sizes (3, 5, 7, 9 and 11). Among the 
window sizes tested, the 5x5 window size 
emerged as optimal for both smoothing 
and LM identification. It exhibited the 
lowest MAD values for both techniques, 
indicating superior performance. This 
suggests that a balance between the size of 
the neighborhood considered and the 
resolution of the features in the data is 
crucial for achieving optimal results. The 
first method estimates values based on a 

(a)Leaf-off grids (b)Leaf-on grids
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modified Savitzky-Golay filter (MSG), 
involving a more complex computation as 
it utilizes the MSG function to estimate 
values for target grid cells based on 
surrounding data in the original DSM. The 
second method estimates values directly 
from the LM data. It simply retrieves the 
values from the calculated LM dataset for 

target grid cells. The LM algorithm in the 
target area favored the window size (5x5) 
for crown surface estimation. This 
suggests that employing a small 
smoothing window size in MSG filtering 
enhances the accuracy of the filtered 
values.

 

Figure 6. (a) leaf-on DSM in August, (b) leaf-off DSM data in December, (c) result of 
estimated leaf-on DSM in December.

3.4 Evaluation of proposed method 

The reference DSM data were 
generated from the leaf-on season data. 
Any grids that contain "No-Data" values 
were excluded when evaluating the 
estimated DSM and reference DSM data. 
The window sizes were refined based on 
their shapes and distance between treetops. 
The evaluation of all estimated DSMs has 
been shown in Table III. A minimum 
MAD value of 1.19 m occurred at the 
window size of 5x5. Table III represents 
the analysis of MAD values for the LM 
and MSG filtering processes with varying 
window sizes (3x3, 5x5, 7x7, 9x9, and 
11x11), providing valuable insights into 
the performance of the filtering technique. 

The observed MAD values for the MSG 
filter (3.10, 2.44, 2.37, 2.35, and 2.36, 
respectively) and for the LM algorithm 
(1.49, 1.19, 1.27, 1.48, and 1.68, 
respectively) provide insights into the 
dispersion or variability present in the 
filtered data across different tree species 
and growth sizes. Figure 7, parts (a) and (b) 
represent a comparison of DSM and DEM 
cross-sections. From the results in Figure 
7, parts (a) and (b), it is obvious that the 
DSM successfully estimates tree height 
surface information for the available 
details in leaf-off areas. Figure 7 shows 
that the estimation process in the leaf-off 
region has good accuracy. A smoothing 
filter reduced the overestimation in the 

El
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(a) (b) (c)



 Article 

Asian J. Geoinfo. 24   AJG-2402002-12 

canopy gap area because the proposed 
smoothing method was applied only to 
leaf-on grids, excluding leaf-off grids 
from the MSG process. 

4. DISCUSSION 

This study estimated the DSM and 
compared the original DSM profiles with 
the reference DSM profiles. Figure 7 
compares the DSM and DEM data profiles, 
with a depth of 0.2 m, before and after 
estimation. The MSG filter produced a 
better surface compared with the original 
LiDAR, especially under the tree canopy 
gap area (Figure 7). The results have 
shown that this methodology reduced 
overestimation. When generating various 
DSM data, the grid size should be adapted 
depending on the nature of the target and 
terrain features, such as crown size and 
tree distributions. Parameter adjustment of 
the MSG filter calculation successfully 
removed canopy gap points in this area. It 
is clear that the canopy gap area has 
improved, and other areas match the 
reference data. As a result of comparing 

the MADs of both the estimated DSM and 
the reference DSM, a DSM in leaf-on 
conditions could be estimated from leaf-
off LiDAR data using our proposed 
method. A higher MAD value indicates 
greater dispersion or variability in the 
filtered data. In the case of MSG, the 
observed MAD values (ranging from 2.44 
to 3.10) suggest varying degrees of 
dispersion, possibly influenced by factors 
such as tree species composition, terrain 
characteristics, and the overall complexity 
of the landscape. On the other hand, the 
MAD values for the LM algorithm 
(ranging from 1.19 to 1.68) also 
demonstrate variability in the filtered data 
but generally exhibit lower dispersion 
compared to MSG. This suggests that the 
LM algorithm tends to produce smoother 
results with less variation in elevation 
values. The discussion underscores the 
significance of MAD values in evaluating 
filtering outcomes and guides further 
considerations for refining the filtering 
parameters in future applications.

Table III: MAD value of estimated DSM with various window size. 

 

Window size

1.493.103.203x3
1.192.443.205x5
1.272.373.207x7
1.482.353.209x9
1.682.363.2011x11

MAD [m]

original Modified SG LM
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Figure 7: Sample of DSM and DEM data profiles with the depth of 0.2 m are compared, 
(a) before estimation and (b) after estimation.

5. CONCLUSION 

In this study, we presented a method for 
developing a DSM in leaf-on condition, 
based on the combination of  LM and 
MSG smoothing filters, using grids 
extracted from leaf-off LiDAR data in 
Niigata, Japan. We confirmed that the 
estimation method of the leaf-off grids 
with a combination of the LM and MSG 
smoothing filter showed better 
performance. The estimated DSM results 
were validated using the actual reference 
leaf-on DSM data. 

Leaf-off grids can be extracted from 
local standard deviation data of the 
original DSM with a 5x5 window size and 
a threshold of 2.0 m. In extracted grids, a 
DSM in leaf-on was estimated using a 5x5 
window size of the LM filtered data. The 
original MAD value of 3.2 m for the leaf-
off DSM was decreased to 1.19 m in the 

leaf-on DSM estimation. We improved the 
overall accuracy of the estimated DSM 
with an average of 2 meters for the 
experimental data. The grid size of the 
estimation process should be changed 
depending on the nature of the target area, 
such as crown size and tree distributions. 
Based on the results, our proposed method 
is well suited for improving the practical 
applicability of available leaf-off data in a 
mixed forest environment. The proposed 
method is suitable for different types of 
trees and forests, where the density of the 
forest presents the most significant 
challenge. 
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