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ABSTRACT 

This interdisciplinary research integrates advanced technology, remote sensing, and AI to 
enhance precision farming in the Dungargarh Tehsil of Bikaner District, Rajasthan, India. 
The study focuses on two main objectives: groundnut crop classification (mapping) and 
the extraction of sowing information. Utilizing temporal optical data preprocessing, 
optimized temporal indices, and a contextual fuzzy model, the Modified Possibilistic c-
Means (MPCM) algorithm with both conventional mean and Individual Sample as Mean 
(ISM) training approaches were employed. Quantitative results demonstrate that CBSI 
MSAVI2 achieves a significantly lower mean membership difference (MMD) of 0.00196 
and a variance of 0.5 compared to conventional MSAVI2. Further experimentation 
identifies ADMPLICM with a 3x3 window size and the ISM training approach as the 
optimal algorithm based on MMD and Variance values. By integrating vegetation indices, 
training approaches, and fuzzy-based algorithms, this study offers a novel approach for 
extracting groundnut sowing information. The results provide valuable insights into the 
temporal dynamics of groundnut sowing, offering reliable tools for farmers, agencies, and 
researchers, ultimately contributing to sustainable agricultural practices.  

 

Keywords: Groundnut crop, Modified possibilistic c-means (MPCM), Individual 
samples as mean (ISM), Class based sensor independent (CBSI), Modified soil adjusted 
vegetation index (MSAVI) 

 

1. INTRODUCTION 

In various disciplines, including earth 
resource applications, remote sensing has 
become an essential tool for research and 
analysis. This covers a wide range of fields, 
including but not limited to atmospheric 
modelling, forestry, agriculture, and urban 

studies (Jensen and Clarke 2000). The 
possibility of bridging gaps between 
datasets has been made much more 
feasible by the wide range of sensors on 
board satellites, many of which operate at 
different wavelengths and spatial 
resolutions. This feature allows for in-
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depth investigations across multiple areas. 
The monitoring of agricultural growth and 
development has benefited greatly from 
recent advances in remote sensing 
technology, specifically in regard to 
various indices and temporal data obtained 
from satellite imaging (Dadhwal et al. 
2002; Rouse et al. 1973). 

Arachis hypogaea, commonly referred 
to as groundnut or peanut, is an essential 
food and cash crop that is important to 
world agriculture. Monitoring and 
understanding the temporal dynamics of 
groundnut sowing dates are essential for 
optimizing agricultural practices, resource 
allocation, and yield prediction (Misra et 
al. 2012). Traditional methods of 
gathering such information often involve 
manual surveys, which can be time-
consuming and may lack spatial coverage 
(Hamadani H.and Rashid 2021). This 
research aims to implement various 
contextual fuzzy machine learning model 
for the extraction of groundnut sowing 
information from temporal optical data. 
This interdisciplinary approach bridges 
the gap between agriculture, remote 
sensing, and artificial intelligence, 
contributing to the advancement of 
precision farming practices. 

The methodology encompasses 
preprocessing temporal optical data, 
extracting information from indices for 
groundnut sowing, and optimizing a 
contextual fuzzy model. This involves 
classifying the inherent uncertainties in 
the agricultural area studying two training 

approaches. The research has been driven 
by the need to provide farmers, 
agricultural agencies, and researchers with 
a reliable tool for mapping sown 
groundnut fields, ultimately aiding in 
informed decision-making and sustainable 
agricultural management. 

2. LITERATURE REVIEW 

In India, crop cultivation practices 
deviate from monoculture, leading to the 
growth of various crop varieties in close 
proximity. Spectral responses of different 
crops may overlap due to factors like 
planting dates and cultural practices, 
posing challenges in classification 
(Masialeti, Egbert, and Wardlow 2010). 
To address this issue, temporal data 
analysis becomes crucial for 
understanding crop phenology and 
distinguishing between different crop and 
vegetation classes. Several studies have 
utilized time series data for crop and 
vegetation analysis. Doraiswamy, 
Akhmedov, and Stern (2006) employed an 
8-date composite over a 3-year time series, 
successfully extracting soybean using 
distinctive NDVI. Foerster et al. (2012) 
conducted spectral-temporal crop-type 
mapping using Landsat TM/ETM images, 
highlighting the importance of timing and 
number of image acquisitions for 
distinguishing crop types. 

Conventional classification techniques 
assign individual pixels to a single class, 
known as hard classification. However, 
applying hard classification is impractical 
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for real-world scenarios. This limitation 
arises from the inherent nature of satellite 
imagery, where each pixel may not 
exclusively belong to a single class, 
indicating mixed characteristics. 
Consequently, the space covered by each 
pixel may encompass multiple classes, 
necessitating diverse handling strategies 
(Dadhwal et al. 2002). 

To extract such information, employing 
fuzzy logic-based or deep learning-based 
classifiers with a soft computing approach 
is recommended (Misra et al. 2012). 
Fuzzy classifiers are favored for crop 
mapping due to their ability to handle 
mixed pixels (Tran, Julian, and De Beurs 
2014). Initially proposed by Goguen 
(1973), fuzzy sets inspired the 
development of Fuzzy c-Means (FCM) by 
Bezdek, Ehrlich, and Full (1984). 
However, FCM lacks efficient explanation 
of data belonging degrees (Tran et al. 
2014), leading to the introduction of the 
Possibilistic c-Means (PCM) approach to 
overcome this limitation (Krishnapuram 
and Keller 1993). PCM's coinciding 
clusters drawback in single-class 
classification prompted the introduction of 
the Modified Possibilistic c-Means 
approach. 

To address non-linearity between 
classes, kernel functions, common in 
machine learning algorithms like support 
vector machines (SVM), have been 
introduced. Kernel-based k-mean 
clustering and Fuzzy Kernel c-Mean 
clustering (FKCM) improved upon FCM, 

but FKCM remains sensitive to noise. To 
refine FKCM's drawbacks, the Kernel 
Possibilistic c-Mean (KPCM) algorithm, 
implementing the kernel approach to PCM, 
was introduced by Rhee, Choi, and Choi 
(2009). Extending the kernel function to 
MPCM, the Kernel-based Modified 
Possibilistic c-Mean (KMPCM) algorithm 
efficiently handles non-linearity, noise, 
and outliers compared to PCM and FCM 
(Wu and Zhou 2008). KMPCM also 
exhibits a faster response in terms of time 
elapsed and the number of iterations and 
clusters (Ganesan and Rajini 2010). 
Combining spatial and spectral 
information using composite kernels can 
enhance classification accuracy (Verrelst 
et al. 2016). 

In small holder agricultural systems in 
northern Malawi, accurate prediction of 
groundnut yield is crucial for food security. 
Kpienbaareh et al. (2022) using 
multitemporal PlanetScope satellite data, 
the study employs a random forest model 
with five key variables to predict 
groundnut yield during the R5/beginning 
seed stage. Results indicate the model's 
high accuracy, with a coefficient of 
determination (R2) of 0.96 and a root 
mean square error (RMSE) of 0.29 kg/ha, 
showcasing its potential for effective 
farming and food security planning 
(Gbodjo, Ienco, and Leroux 2021). In Sub-
Saharan Africa, where small holder farms 
dominate agriculture, this study leverages 
Sentinel satellite data and machine 
learning models to estimate millet yields 
in central Senegal. The Random Forest 
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model explained 50% of millet yield 
variability, outperforming deep learning 
models like Convolutional Neural 
Network, and demonstrated stable and 
satisfactory accuracy in forecasting yields 
two weeks before harvest. Sannidi et al. 
(2023) in the rabi season of 2019-20 in 
Telangana's Mahabubnagar district, 
groundnut crop acreage and yield were 
estimated using Landsat-8-OLI satellite 
images and regression equations. The 
estimated crop area was 57,865 ha with a 
producer's accuracy of 100%, user's 
accuracy of 90%, and a relative deviation 
of 28.6% compared to the department of 
agriculture's ground estimates, while crop 
yields were estimated with an R2 value of 
0.71 and a correlation coefficient of 0.87. 

Image classification methods can be 
broadly divided into two categories: 
supervised classification and 
unsupervised classification. Supervised 
classification is preferred when training 
data samples are available, while 
unsupervised classification is employed 
when training data is not present. Pixel-
based training typically relies on the mean 
or variance-covariance computed from 
training samples, which may not capture 
the full variability within a class. To 
overcome this limitation and address 
heterogeneity within a single class, 
individual samples are taken into 
consideration instead of relying solely on 
mean or variance-covariance. In 
addressing the challenge of heterogeneity 
within a single class, Singhal et. al., (2021) 
departed from relying on statistical 

parameters and instead considered the role 
of each training sample. They applied a 
Modified Possibilistic c-means fuzzy 
algorithm to accurately map individual 
classes such as mustard, wheat, and grass 
(Singhal et. al., 2021). Similarly, Jose and 
Kumar (2022) employed the individual 
sample as mean approach using the 
MPCM algorithm to map Psyllium Husk 
crops, enhancing classification accuracy 
by reducing heterogeneity within classes. 

This study seeks to contribute to the 
broader field of precision agriculture and 
remote sensing applications by integrating 
cutting-edge technology and novel 
modelling methodologies, enabling a 
more data-driven and efficient agricultural 
environment.  This research aims to 
develop a methodology for extracting 
groundnut crop sowing information using 
temporal optical data and a Fuzzy 
Machine Learning Model with two 
training approaches. Also, the individual 
sample as mean along with contextual 
information will be a novel approach in 
this study and the outcomes of this 
research have the potential to impact not 
only groundnut cultivation practices but 
also serve as a blueprint for similar studies 
focused on other crops and agricultural 
regions globally. 

3. MATHEMATICAL CONCEPTS 

3.1 Vegetation Indices 

Vegetation indices are critical for 
optimizing crop management operations 
in the context of precision agriculture 



 Article 

Asian J. Geoinfo. 24   AJG-2401001-5 

(Jackson and Huete 1991). They make it 
possible to monitor a number of 
agricultural field parameters, such as crop 
growth cycles, yield predictions, and the 
evaluation of water stress. Unlike NDVI 
and NDRE, MSAVI2 is specifically 
tailored to situations with low vegetation 
or plants lacking chlorophyll, which can 
result in inaccuracies in data analysis. This 
is particularly noticeable during stages 
like germination and leaf development, 
where bare soil between seedlings is 
prevalent. In temporal studies such as 
vegetation mapping and change detection, 
it is imperative to minimize the impact of 
atmospheric and acquisition-related 
effects. One effective way to address this 
problem is to combine data from several 
spectral bands. This method helps to 
reduce problems caused by spectral 
overlap and enhances reliable and accurate 
when doing tasks like mapping crops and 
other vegetation-related evaluations. 
During the course of the study, two indices 
were tested: the CBSI-MSAVI2 and the 
traditional MSAVI2. 

3.1.1 Conventional MSAVI2 

The MSAVI2 (Modified Soil-Adjusted 
Vegetation Index 2) is a specialized 
vegetation index that effectively accounts 
for soil interference as shown in Eq (1). 
MSAVI2 helped to compensate with the 
effect of soil brightness on the pixel value 

(hence calculated index value) since its 
coverage is not continuous in the field, 
which leads to more soil exposure (Sabir 
and Kumar 2022b). The selection of the 
index in this study was influenced by the 
specific crop of interest, which is 
groundnut. During the early stages of 
germination and leaf development, the 
presence of substantial soil coverage in the 
field significantly amplifies the soil's 
influence on the overall spectral response. 
As a result, MSAVI2 was chosen and 
applied to effectively mitigate the soil's 
impact on the data and ensure more 
accurate analysis, given its ability to 
address this soil interference. 

MSAVI =

("×$%&'()*"×($%&'()!),×($%&)&)
"

			(1)  

3.1.2 CBSI-MSAVI2 

The bands with the maximum and 
minimum values for the target class were 
initially selected using the class-based 
sensor independent (CBSI) MSAVI2 
approach, and the value of the vegetation 
index was then calculated using these 
bands as mentioned in the Eq (2) (Sabir 
and Kumar 2000). This customization 
maximizes the index values for the target 
feature, enhancing its ability to distinguish 
the target feature from the background or 
other similar features more effectively.

 

	CBSI − MSAVI2 =
2 × Max + 1 − 32 × (Max + 1)" − 8 × (Max − Min)

2 … (2)

Where Max and Min are the maximum and minimum reflectance bands for a 
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given set of bands respectively. 

3.2 Modified Possibilistic c-means 
(MPCM) 

Fuzzy-based algorithms, such as the 
MPCM (Modified Possibilistic c-Means) 
algorithm, offer an effective approach for 
soft classification of images, making them 
well-suited for real-world applications 
(Suman, Kumar, and Kumar 2019). What 
distinguishes the MPCM algorithm is its 
remarkable independence from parameter 
initialization or optimization. Unlike 
many other algorithms, MPCM does not 
necessitate fine-tuning of parameters, 
streamlining the implementation process 
significantly (Sabir and Kumar 2022a). 
This algorithm's unique feature of not 
requiring meticulous parameter 
adjustments simplifies its deployment, 
making it more user-friendly and 
adaptable across diverse datasets. This 
advantage is particularly crucial in 
scenarios where data characteristics may 
vary, and the algorithm needs to perform 
reliably without intricate parameter tuning. 

Furthermore, the MPCM algorithm 
excels in its ability to efficiently handle 
and classify coincident clusters. In 
situations where distinct groups in the data 
may overlap or exhibit similar 
characteristics, MPCM demonstrates 
robustness, contributing to accurate and 
meaningful soft classification results. This 
characteristic enhances the algorithm's 
applicability in scenarios where 
conventional algorithms might struggle to 
delineate boundaries between different 

classes. The objective function as 
mentioned in the Eq (3) that was applied 
to determine each pixel's membership 
value in the input image is 

𝐽-./-(U, V) = ∑ ∑ (u01)2||	x1 −3
04(

$
14(

	v0||" + ∑ η1$
14( ∑ (λ1 − u01)23

54(  (3) 

where λ1 > 0. 

U is the matrix containing membership 
values for each pixel corresponding to 
each class, whereas V is the matrix 
containing class centers. i denotes the 
pixels, which range from 0 to m, and j 
indicates the classes, which range from 0 
to N, where N is the total number of 
classes. 𝑢67  is the typicality value of 
pixel 𝑥6  in class j. The square of the 
distance between the measured value of a 
pixel and the cluster center is 𝑑67" , as 
shown in the Eq (4) which is calculated as; 

d10" =	∥ x1 − ν0 ∥8 A)(Ix1 − ν0J. (4) 

The fuzzy cluster center 𝑣7 as shown in 
Eq (5) is calculated using equation (5): 

v0 =
∑ :"#
$
"%& ;"
∑ :"#$
"%&

 (5) 

where 𝑣7 is the cluster center. 

4. STUDY AREA & DATASETS 
USED 

The research has been being carried out 
in the Dungargarh Tehsil of the Bikaner 
District in Rajasthan, India. This location 
was selected due to its rich abundance of 
agricultural fields, posing a challenge in 
distinguishing between fields that share 
similar characteristics. Rajasthan 
experiences comparatively low rainfall, 
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and groundnut, a resilient and drought-
tolerant crop, is commonly cultivated in 
this region. The selection of this study area 
offers the advantage of minimal haze and 
cloud cover in the available data, 
enhancing image contrast. The study area, 
illustrated in Fig. 1, showcases numerous 
agricultural fields and the field work was 
conducted on 27th August of 2023 geo-
tagged points collected from the ground 
serve as training and testing data for the 

groundnut crop, as well as other non-target 
crops like Bajra, Gawar, Cotton, Moat dal, 
Moong, and Til within the study as shown 
in the Figure 2. The following Google 
Earth image i.e., Fig 3 shows the different 
geo-tagged fields. The temporal datasets 
utilized in this study were derived from 
PlanetScope, which is distinguished by a 
spectral resolution comprising 8 bands of 
wavelengths as shown in the Table 1.

 

Figure 1: Map depicting study area of this research work. 
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Figure 2: Field work for collecting samples. 

 

Figure 3: Google earth image showing all field sample. 
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Table 1: PlanetScope specifications. 

Spectral Resolution 8 bands 
Spatial resolution 3m 

Coverage 340M km2/day 
Revisit time Daily 

Spectral Bands 

Coastal Blue: 431 - 452 nm 
Blue: 465 - 515 nm 

Green 1: 513 - 549 nm 
Green: 547 - 583 nm 
Yellow: 600-620 nm 
Red: 650 - 680 nm 

Red Edge: 697-713 nm 
NIR: 780 - 860 nm 

Dynamic Range of Camera 12 bit 
Product Used Surface Reflectance 

Table 2: Temporal Dates used for generating database 

TEMPORAL DATES 

05/06/2023 01/07/2023 06/08/2023 04/09/2023 

09/06/2023 05/07/2023 18/08/2023 07/09/2023 

13/06/2023 12/07/2023 22/08/2023 16/09/2023 

20/06/2023  29/08/2023 19/09/2023 

24/06/2023  31/08/2023 23/09/2023 

28/06/2023    

4.1 Temporal Data 

The choice of optical data dates in this 
study was crucial, significantly impacting 
the processing and outcomes. In particular, 
with regard to the various phenological 
stages of the groundnut crop, this reliance 
on temporal data was important for 
mapping. The selected dates ensure 
alignment with key moments in the crop's 
growth cycle, contributing to accurate 

identification and monitoring. In essence, 
the temporal dimension is critical in 
capturing the spectral variations related 
with groundnut crop development, which 
improves the precision of the study's 
conclusions. The temporal scope of the 
data for this project spans from June 5th to 
September 28th 2023, to include initial 
sowing to full growth stages of crop as 
indicated in the accompanying Table 2. 
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5. METHODOLOGY 

Figure 4 depicts the flowchart 
methodology adopted. The temporal 
indices database, along with ground 
reference data, was utilized to extract 
samples for each target class. A 
separability analysis was conducted to 
determine the optimal number of dates for 
the study. This analysis aimed to 
maximize the separation among target 
classes, assessed using the Euclidean 
distance. In the temporal indices database, 
each layer or band represented specific 
dates corresponding to distinct crop stages 
in the target crop's phenology. These 
temporal layers played a crucial role in 
accurately mapping the crop throughout 
its phenological cycle, facilitating 
effective differentiation from other crops 
or vegetation types (Table 4 shows the 
phenology of groundnut in the chosen 
study area). 

The Fuzzy-based Modified 
Possibilistic c-Means (MPCM) was 
employed to address non-linear 
separations among spectrally similar 
classes. The conventional mean training 
approach encountered challenges in 
handling heterogeneity effectively, 
leading to the adoption of the Individual 
Sample as Mean (ISM) training approach. 
A comparative analysis was conducted 
between these two training approaches, 
considering their use in conjunction with 
convolution windows. 

Traditional classifiers often use 
statistical measures to represent a cluster 

or class, but in situations with high 
heterogeneity in training data, this may 
lead to inaccurate class representation. To 
overcome this limitation, a method using 
individual samples as means was 
developed. Incorporating this approach 
resulted in reduced misclassification rates 
and a more accurate representation of the 
class. This approach proves especially 
beneficial in scenarios where traditional 
classifiers struggle to accurately 
characterize classes with diverse and 
heterogeneous data. 

In the context of the MPCM classifier, 
adjustments were made to the objective 
function when integrating it with the 
MPCM. This modification was crucial to 
incorporate the individual effect of each 
pixel, enhancing the classifier's ability to 
accurately represent the intricacies of the 
data. 

After identifying sowing dates in the 
fields through spectral graphs aligned with 
ground truth data, five optimized temporal 
databases were considered (as mentioned 
in Table 3). Each of these databases was 
generated using relevant indices and 
subsequently utilized for the classification 
process. This approach involved 
leveraging the temporal evolution 
captured by the indices to enhance the 
accuracy and precision of the 
classification results. Figure 5 and Figure 
6 shows the curves for CBSI-MSAVI2, 
MSAVI2 values for different sowing dates 
and followed by CBSI-MSAVI2 values 
during different phenological stages from 
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sowing to harvesting respectively.

 
Figure 4: Methodology Flowchart. 

Table 3: Bands selected for CBSI-MSAVI2 & Sowing Dates. 

Date 
Maximum valued 

Band 

Minimum Valued 

Band 

CBSI-MSAVI2 

Value 
MSAVI2 Value 

13th June NIR (842 nm) Blue (490 nm) 0.6296 0.447059 

20th June NIR (842 nm) Blue (490 nm) 0.6255 0.568627 

28th June NIR (842 nm) Blue (490 nm) 0.7396 0.615686 

01st July NIR (842 nm) Blue (490 nm) 0.6672 0.65098 
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Figure 5: Plot depicting CBSI-MSAVI2 & MSAVI2 values for different sowing dates. 

 

Figure 6: CBSI-MSAVI2 trends for the sowing of groundnut crops on June 13, 2023, 
across the temporal domain. 

Table 4: Groundnut Crop Phenology Stages in the Chosen Study Area 

Phenological Stage No. of days from sowing Sample Date if sown on July 1st 

Seedling 10-15 June 8th – July 1st 

Flowering 60  Sept 15th 

Pod formation 120 Oct 30th 

Maturity 140 Nov 20th 

Harvesting 160 Dec 5th 
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6. RESULTS & DISCUSSIONS 

Separability analysis was conducted 
utilizing the euclidean distance metric, 
comparing the groundnut crop with other 
sampled crops. The minimum separability 
values were maximized for various date 
combinations involving CBSI-MSAVI2 
and MSAVI2. The selection of 8 temporal 
dates for the separability analysis in 
distinguishing groundnut crops from other 
crops was based on a balance of 
maximizing discrimination capability and 
practical considerations. The primary 
objective was to maximize the minimum 
separability value using the Euclidean 
distance metric, and utilizing 8 dates 
resulted in a high minimum separability 
value of 42. This indicates a substantial 
ability to differentiate groundnut crops 
with other crops. While adding more dates, 
such as 9, 10, or even up to 12, did slightly 
increase the separability values, the 
improvements were marginal, showing 
diminishing returns beyond 8 dates. Hence, 
this date combination was chosen as the 
optimal balance between achieving high 
separability and managing data 
complexity. This number of dates ensures 
that critical phenological stages of the 
groundnut crop were adequately captured, 
offering robust and consistent temporal 
coverage. Additionally, using identified 
combination of dates avoids 
overwhelming computational resources, 
making data processing more efficient 
while maintaining high classification 
accuracy. Therefore, the selection of this 

combination of temporal dates provides a 
comprehensive and efficient dataset for 
accurately distinguishing groundnut crops, 
facilitating better crop monitoring and 
management. Likewise, optimized 
temporal date combinations were 
determined for all identified sowing dates, 
as detailed in the Table 5, for June 13th 
2023 of ground nut sowing. 

Following the optimization of temporal 
dates, a comprehensive analysis of 
spectral indices was conducted to evaluate 
the classification performance. Two 
distinct indices were considered for 
experimentation: conventional MSAVI-2 
and CBSI MSAVI-2. The primary focus 
was on assessing how well each index 
handles heterogeneity and accurately 
classifies groundnut fields. We have used 
five training samples and three testing 
samples for each identified sowing date. 

The evaluation metrics employed for 
this analysis were the mean membership 
difference (MMD) and variance. The 
results revealed significant distinctions 
between the two indices. CBSI MSAVI2 
demonstrated a significantly lower MMD 
value of 0.00196 and a variance of 0.5. In 
contrast, the conventional MSAVI2 
exhibited higher values, with an MMD of 
0.105 and a variance of 1. These outcomes 
suggest that CBSI MSAVI2 outperformed 
conventional MSAVI2 in handling 
heterogeneity within the groundnut fields, 
leading to a more precise and accurate 
classification. The minimized MMD and 
variance values indicate enhanced 
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separability and better discrimination 
between groundnut crop and other non-
target crops. This highlights the efficiency 
of CBSI MSAVI2 in collecting spectral 
variations and highlights its potential to 

improve groundnut crop mapping 
precision in the chosen study area. 
Consequently, CBSI-MSAVI2 was 
selected as the optimal index for this study.

 

Table 5: June 13th 2023 of ground nut sowing with CBSI-MSAVI2 Indices 

Number of Images Corresponding Dates Minimum Separability value 

1 5 4 

2 5 12 29 

3 5 9 12 31 

4 5 9 11 12 35 

5 5 8 9 11 12 35 

6 2 5 8 9 11 12 36 

7 2 5 8 9 10 11 12 41 

8 1 2 5 8 9 10 11 12 42 

9 1 2 4 5 8 9 10 11 12 42 

10 1 2 3 4 5 8 9 10 11 12 44 

11 1 2 3 4 5 6 8 9 10 11 12 44 

12 1 2 3 4 5 6 7 8 9 10 11 12 45 

Note: The red-highlighted numbers indicate the selected optimized temporal data.

We extended our experimentation 
using MPCM algorithms with exploring 
three types of contextual objective 
function to study contextual effect, 
including MPCM, MPCM-s, MPLICM, 
and ADMPLICM, employing two 
different window sizes: 3x3 and 5x5. 
Classification was performed using these 
algorithms, and the assessment was based 
on MMD and variance. Figures 7 and 8 
shows the Mean Membership Difference 
(MMD) and Variance values for different 
algorithms tested with varying window 
sizes (3x3 and 5x5) and training 
approaches (Mean and ISM). For the mean 
training approach, the MPCM algorithm 

demonstrated a MMD of 0.00196 and a 
Variance of 0.00003, indicating its 
effectiveness. Similarly, the ADMPLICM 
algorithm with the ISM training approach 
showed superior performance with a 
MMD of 0.00196 and a Variance of 
0.000003. This analysis identifies 
ADMPLICM 3x3 with the ISM training 
approach as the optimal algorithm, 
emphasizing its efficiency in handling 
heterogeneity within groundnut fields for 
precise and accurate classification. 

The data was classified using the 
optimal algorithm ie ADMPLICM 3x3 
with ISM training approach for various 
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sowing dates identified and the outputs of these were shown in figures from 9 to 12.

 

Figure 7: Plot showing accuracy assessment for various MPCM for 3x3 window. 

 

Figure 8: Plot showing accuracy assessment for various MPCM for 5x5 window.

We extended our experimentation 
using MPCM algorithms with exploring 
three types of contextual objective 
function to study contextual effect, 
including MPCM, MPCM-s, MPLICM, 

and ADMPLICM, employing two 
different window sizes: 3x3 and 5x5. 
Classification was performed using these 
algorithms, and the assessment was based 
on MMD and variance. Figures 7 and 8 
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shows the Mean Membership Difference 
(MMD) and Variance values for different 
algorithms tested with varying window 
sizes (3x3 and 5x5) and training 
approaches (Mean and ISM). For the mean 
training approach, the MPCM algorithm 
demonstrated a MMD of 0.00196 and a 
Variance of 0.00003, indicating its 
effectiveness. Similarly, the ADMPLICM 
algorithm with the ISM training approach 
showed superior performance with a 
MMD of 0.00196 and a Variance of 
0.000003. This analysis identifies 
ADMPLICM 3x3 with the ISM training 
approach as the optimal algorithm, 
emphasizing its efficiency in handling 
heterogeneity within groundnut fields for 
precise and accurate classification. 

The data was classified using the 
optimal algorithm ie ADMPLICM 3x3 
with ISM training approach for various 
sowing dates identified and the outputs of 
these were shown in figures from 9 to 12. 

The total accumulated date wise 
sowing area of groundnut was estimated to 
be 28 square kilometers. The trends in 
sowing for the study area were depicted in 
figure 13. The sowing trend exhibits a 
gradual increase starting in June, reaching 
its peak towards the end of June, 2023, and 
subsequently declining during mid-July. 
These trends provide valuable insights 
into the temporal dynamics of groundnut 
cultivation in the study area. 

 
Figure 9: Classified map output for 13th of June, 2023 using ADMPLICM algorithm. 
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Figure 10: Classified map output for 20th of June, 2023 using ADMPLICM algorithm. 

 

Figure 11: Classified map output for 28th of June, 2023 using ADMPLICM algorithm. 
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Figure 12: Classified map output for 1st of July, 2023 using ADMPLICM algorithm. 

 
Figure 13: Trend in sowing of groundnut crop in the study area. 

7. CONCLUSIONS 

In conclusion, this research represents 
a significant contribution to the fields of 
precision agriculture, remote sensing, and 
artificial intelligence by addressing the 

complex task of groundnut sowing 
information extraction. The study, 
conducted employed a comprehensive 
methodology combining temporal optical 
data preprocessing, optimized temporal 
indices, and a contextual fuzzy model. The 
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utilization of the Modified Possibilistic c-
Means (MPCM) algorithm, particularly 
enhanced by the Individual Sample as 
Mean (ISM) training approach, proved 
major advantage in soft classification. The 
use of the ISM approach effectively 
handled heterogeneity, accounting for 
scenarios where entire groundnut fields 
are not sown in a single day, and variations 
in fertilizer application and non-
uniformities in water systems, such as 
sprinklers, exist. Expanding the scope to 
MPCM algorithm variations, the research 
identified ADMPLICM 3x3 with the ISM 
approach as the optimal algorithm for this 
study, showcasing its effectiveness in 
handling complex agricultural landscapes. 
The integration of mathematical concepts, 
including vegetation indices, and the 
application of fuzzy-based algorithms 
showcased the power of these advanced 
technologies in extracting groundnut 
sowing information. The study not only 
contributes valuable insights into 
groundnut crop dynamics but also offers a 
reliable tool for farmers, agencies, and 
researchers, aiding in informed decision-
making and sustainable agricultural 
practices. The interdisciplinary approach 
undertaken in this research, bridging 
agriculture, remote sensing, and artificial 
intelligence, provides a blueprint for 
similar studies on diverse crops and 
agricultural regions globally. The 
outcomes of this research contribute to 
advancing precision farming practices, 
emphasizing the importance of utilizing 
state-of-the-art technologies for efficient 

and data-driven agricultural management. 
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