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ABSTRACT 

Interferometric synthetic aperture radar (InSAR) is a technique to measure ground 
deformation and topographic changes with high precision. Accurate estimating of the 
baseline between two orbits, which refers to the satellite's relative position in space during 
radar image acquisition, is crucial for obtaining reliable InSAR measurements. However, 
the discrete orbital trajectory of the satellite requires interpolation to obtain the position 
and velocity at arbitrary times. This research investigates the impact of different orbital 
interpolation methods on the accuracy of baseline estimation in InSAR applications. 
Since the advanced SAR satellites have centimeter-level accuracy through precise orbit 
determination, interpolation-induced errors play a critical role in baseline estimation. This 
study compares different orbital interpolation methods, including linear, cubic, piecewise 
cubic, and Lagrange interpolations. We analyze the results of various interpolation 
techniques and assess their influence on baseline estimation. The experiment utilized 21 
TerraSAR-X and TanDEM-X images to calculate the perpendicular baseline between 
orbits. The calculated baselines were compared with ESA SNAP software, and the mean 
difference was less than 1.7m. The cubic interpolation showed better results than the other 
three methods. The findings provide valuable insights into selecting the most suitable 
interpolation method for accurate baseline estimation in different scenarios, contributing 
to improved InSAR data processing and interpretation. 
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1. INTRODUCTION 

Earth resources satellites typically record 
the satellite's ephemeris discretely in 
metadata. However, most satellite data 
processing requires continuous and 
precise orbital information. Therefore, 
orbital interpolation is an essential 
procedure. It is particularly critical for 
missions that demand high-precision 
orbital data, such as high-resolution 
optical imaging satellites that require 
direct georeferencing (Teo, 2011) and 
radar sensors used in Interferometric 
Synthetic Aperture Radar (InSAR) 
missions (Fattahi and Amelung, 2014), as 
discussed in this study. The InSAR 
technique utilizes the phase difference of 
radar signals, providing a non-contact, 
high-precision method for measuring 
critical geophysical parameters, such as 
the topography height or ground 
deformation. Due to its capability to 
provide all-weather, wide-area 
observation data, space-borne InSAR is 
currently extensively utilized in Earth 
environmental monitoring (Chaussard et 
al., 2014; Li et al., 2019; Kang et al., 2021).  

InSAR baseline calculation plays a pivotal 
role in the assessment of radar 
interferometry. For instance, in the process 
of calculating surface deformation using 
Differential Interferometric Synthetic 
Aperture Radar (D-InSAR), the selection 
of image pairs is mainly based on the 
baseline (Reigber et al., 1997; Li et al., 
2022). Similarly, when deriving surface 
elevation through InSAR, errors in the 

baseline can directly impact the resulting 
elevation. Orbital error can lead to 
baseline error, which subsequently affects 
elevation error. Theoretically, a longer 
perpendicular baseline results in reduced 
elevation error. However, as the 
perpendicular baseline increases, the 
correlation between two radar images 
weakens, which is disadvantageous for 
calculating the interferometric phase 
(Hanssen, 2001; Lu et al., 2018).  

Obtaining precise InSAR measurements 
relies heavily on accurately determining 
the orbit and baseline (Osmanoğlu et al., 
2016), which represents the satellite's 
relative position in space during radar 
image acquisition. However, due to the 
discrete recording of the satellite's orbital 
trajectory, interpolation is necessary to 
calculate its position and velocity at 
arbitrary times (Breit et al., 2009; Fan et 
al., 2019). In recent years, with the 
continuous advancement of SAR satellites, 
the orbital accuracy has steadily improved, 
exemplified by satellites such as 
TerraSAR-X (Hong et al., 2017) and 
Kompsat-5 (Lee et al., 2022), which 
achieve centimeter-level orbital accuracy. 
The enhancement in orbital accuracy has 
also resulted in a relatively increased 
impact caused by orbital interpolation. For 
example, the accuracy of the TerraSAR-X 
precise orbit was 12mm to 17mm (Hackel 
et al., 2018), the time interval for orbital 
state vector in Terra SAR-X metadata is 10 
sec, and the distance between these two 
sampling points is about 76km. Therefore, 
the interpolation-induced error has to be 
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considered in the InSAR process. Previous 
studies have examined the accuracy 
impact of interpolation methods, such as 
Vassilaki and Stamos (2014), who 
investigated the influence of various 
interpolation methods on the orbital 
accuracy of TerraSAR-X. However, most 
research (Schenewerk, 2003; Yousif and 
El-Rabbany, 2007) has focused solely on 
orbital accuracy without further 
considering its effects on the baseline, 
which is one of the important factors for 
InSAR process. 

The sources of error in baseline estimation 
can be categorized into GNSS 
measurement errors and baseline 
transformation errors. The GNSS 
measurement errors encompass factors 
such as satellite clock inaccuracies, 
atmospheric effects (e.g., tropospheric and 
ionospheric delays), receiver noise, and 
biases. The baseline transformation errors 
involve errors in orbit interpolation 
methods, sampling intervals, and the 
conversion errors between the antenna 
phase center and satellite center to the 
geodetic coordinate system. This study 
investigates the impact of various orbital 
interpolation methods on the accuracy of 
baseline estimation in InSAR applications. 
Furthermore, experimental analysis was 
conducted utilizing twin SAR satellites, 
TerraSAR-X and TanDEM-X. The paper 
is structured as follows: Section 2 
introduces the methodology for 
calculating perpendicular baselines and 
discusses different orbital interpolation 

methods. Section 3 presents the 
experimental results and discussions, 
while Section 4 summarizes the study's 
outcomes and provides recommendations. 

2. METHODOLOGY 

The objective of this study is to 
comprehensively investigate the impact of 
various orbital interpolation methods on 
the estimation of perpendicular baselines 
in SAR image pairs. Before calculating the 
perpendicular baseline, we analyze the 
perpendicular baseline errors propagated 
to subsequent InSAR applications. Taking 
the calculation of surface height using 
phase differences from SAR image pairs 
as an example: Two SAR orbits distance 
represented by baseline 𝐵  and they 
acquire the complex response at range 𝑅!, 
the change in look angle can be inferred 
from the interferometric phase, as 
illustrated in Figure 1. By utilizing the 
range 𝑅! and the height of the platform 
(𝐻"#$), it becomes feasible to calculate the 
height of point 𝑃		(𝐻%). To understand the 
impact of baseline errors on elevation 
estimation, we differentiate 𝐵&  in 
Equation 1, resulting in Equation 2. After 
rearrangement, Equation 3 establishes the 
relationship between 𝜎' , 𝜎(  and the 
initial elevation (𝐻)). It conclude that 𝜎' 
is inversely proportional to 𝐵&, indicating 
that shorter perpendicular baselines lead to 
larger elevation errors, whereas longer 
perpendicular baselines result in smaller 
elevation errors. In other words, orbital 
error leads to baseline error (𝜎(), which in 
turn affects the elevation error (𝜎'). 
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Figure 1. Interferometric configuration for height derivation. 
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where 𝐻 = 	object	height  
 𝐻) = 	initial	object	height  
 𝜆	 = 	wavelength 
 𝑅 = 	slant	range  
 𝜃	 = 	look	angle  
 𝐵& = 	perpendicular	baseline 
 𝜎(! = 	standard	deviation	of	perpendicular	baseline 
 ∂𝜑 = 	interferometric	phase	change 

Based on the concise analysis above, it can 
be concluded that the perpendicular 
baseline is a crucial parameter in InSAR 
applications. The following two 
subsections will separately elaborate on 
the methodology employed in this study 
for calculating the perpendicular baseline 
and the orbit interpolation method utilized. 

2.1 Perpendicular Baseline Calculation 

The calculation of the perpendicular 
baseline (𝐵& ) involves first determining 
the three-dimensional coordinates (𝑃!, 𝑃6, 
and 𝑃 ), where 𝑃!  corresponds to the 
master image's orbit, 𝑃6  to the slave 
image's orbit, and 𝑃 to the ground point. 
(Figure 2). The entire process consists of 
three steps: firstly, it is necessary to 
determine whether there is an overlap 
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between the master and slave images. The 
calculation of the baseline is only required 
when there is an overlap between 
corresponding image pairs. Therefore, the 
four corner coordinates of the two images 
in object space are utilized to calculate the 
overlap extent, and the baseline is only 
computed when the overlapping ratio 
exceeds 50%.  

The second step involves computing the 
position of the slave image, 𝑃6, within its 
orbit. The position of the master image in 
object space, as well as the three-
dimensional coordinates of the 
corresponding 𝑃!  point in the orbit and 

the velocity vector in the normal direction, 
can be obtained from ephemeris. 
Subsequently, by utilizing two conditions: 
(1) the coplanarity condition among 𝑃! 
from Orbit 1, 𝑃6  from Orbit 2, and the 
ground point 𝑃, and (2) the requirement 
that 𝑃6 lies on the slave image's orbit, we 
can establish the orthogonality condition 
(Equation 4) and the collinearity equation 
(Equation 5). Substituting Equation 5 into 
Equation 4 yields Equation 6, from which 
we can solve for the scale factor 𝑠. Using 
Equation 5 with the determined scale 
factor 𝑠, we can then obtain the position 
of the slave image's 𝑃6  point within its 
orbit.

 
Figure 2. Illustration of orbit geometry. 

G𝑃6HHHH⃗ − 𝑃!HHH⃗ J ∙ 𝑛H⃗ = 0       (4) 

𝑃6HHHH⃗ = 𝑙)HHH⃗ + 𝑑𝑙HHH⃗ × 𝑠       (5) 

RG𝑙)HHH⃗ + 𝑑𝑙HHH⃗ × 𝑠J − 𝑃!HHH⃗ S ∙ 𝑛H⃗ = 0    (6) 

where 𝑃!HHH⃗ = (𝑋", 𝑌", 𝑍")	 

 𝑛H⃗ = G𝑉7$ , 𝑉8$ , 𝑉9$J 

 𝑙)HHH⃗ = (𝑋"′, 𝑌"′, 𝑍"′)	 

 𝑑𝑙HHH⃗ = G𝑑7$′, 𝑑8$′, 𝑑9$′J 
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In the third step, subtracting the position 
vector of the slave image's 𝑃6HHHH⃗  from the 
position vector of the master image's 𝑃!HHH⃗  
yields the baseline vector 𝐵H⃗  (Equation 7). 
By utilizing the position vector of the 
ground point 𝑃H⃗ , we can calculate the 
vector 𝑑  between the orbit and the 
ground point (Equation 8). Subsequently, 
employing Equation 9 to calculate the area 
of the parallelogram □	𝑎𝑏𝑐𝑑  and 
utilizing an area identity equation, we 
obtain Equation 10. The parallelogram  
□	𝑎𝑏𝑐𝑑  is constructed from the 
coordinates of two orbital points and the 
ground point, as illustrated in Figure 3 (i.e., 
the red line). Finally, Equation 11 can be 
derived through transposition, allowing 
for determining the perpendicular baseline 
length. 

In the previous step, we obtained the 
length of the perpendicular baseline, but it 
lacks directional information. Therefore, it 
is necessary to use azimuth angles to 
determine the sign (positive or negative) 
of the perpendicular baseline. We 
calculate the azimuth angles 𝜑:; , 𝜑:< , 
and 𝜑:+, all measured clockwise from the 
north direction. Here, 𝜑:;  corresponds 
to the azimuth angle from the scene center 
to the master image, while 𝜑:< and 𝜑:+ 
are the azimuth angles from the scene 
center to the left-side and right-side slave 
images, respectively (Figure 4). This 
implies that when slave orbit is on the 
right side of the master orbit's direction, 
perpendicular baseline is positive. 
Conversely, when slave orbit is on the left 
side of the master orbit's direction, 
perpendicular baseline is negative.

 

 
Figure 3. Configuration of perpendicular baseline. 
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Figure 4. Diagram illustrating the sign of the perpendicular baseline. 

𝐵H⃗ = 𝑃6HHHH⃗ − 𝑃!HHH⃗       (7) 

𝑑 = 𝑃H⃗ − 𝑃!HHH⃗       (8) 

𝐴𝑟𝑒𝑎□	#?@A = a𝐵H⃗ × 𝑑a = a𝐵&HHHHH⃗ a ∙ a𝑑a   (9) 

a𝐵H⃗ × 𝑑a = a𝐵&HHHHH⃗ a ∙ a𝑑a     (10) 

a𝐵&HHHHH⃗ a =
B(C⃗ ×A⃗B
BA⃗B

     (11) 

where, 𝐵H⃗ 	is the baseline between points 𝑃! and 𝑃6; 𝑑 is a vector between points 𝑃! 
and 𝑃 ; a𝐵&HHHHH⃗ a is the length of perpendicular baseline. 

 

2.2 Orbit Interpolation Methods 

This study employs four interpolation 
methods to interpolate orbit: linear, cubic, 
piecewise cubic, and Lagrange 
interpolations. The parameters subject to 
interpolation include the satellite's 
position ( 𝑋", 𝑌", 𝑍" ) and velocity 
(𝑉7$ , 𝑉8$ , 𝑉9$). The following formulas are 
provided as examples, focusing solely on 
the interpolation of the 𝑋". 

 
2.2.1 Linear interpolation 

Llinear interpolation involves approximating 
the sensor's orbit between 2 timestamps as a 
straight-line segment. Utilizing sensor 

positions and velocities at 2 timestamps within 
the ephemeris, linear interpolation parameters 
can be calculated separately 
(𝑋", 𝑌", 𝑍", 𝑉7$ , 𝑉8$ , 𝑉9$), with each parameter 
being computed from 2 unknown coefficients 
(shifting and direction) (Equation 12). Linear 
interpolation is a simple and intuitive method 
applicable for predicting missing values in 
sampled intervals under constant rate 
conditions. It is noteworthy that this method 
heavily relies on the distribution of data, thus 
may not adequately capture non-linear 
variations or abrupt changes in the data (Lepot 
et al., 2017).    

𝑋"(𝑡) = 𝑎) + 𝑎!𝑡  (12) 
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2.2.2 Cubic Interpolation  
 
Cubic interpolation assumes that the 
sensor's trajectory between two 
timestamps can be approximated using 
Cubics. In this approach, the data is 
segmented, and each segment is 
represented using a 3rd degree polynomial, 
effectively dividing the data into sections, 
with each section approximated by a cubic 
polynomial. Each segment is associated 
with four coefficients, as represented by 
Equation 13. The cubic interpolation 
requires at least 3 points and it is C1 
continuity. The cubic method, similar to 
linear interpolation, involves the creation 
of a polynomial function between two 
points rather than a straight line. It 
estimates intermediate values along the 
way through the polynomial to consider 
trends over a larger range. Under the 
assumption of not emphasizing orbit 
accuracy, cubic splines can yield 
computationally efficient interpolation 
results (Neta et al., 1996 & Yousif and El-
Rabbany, 2007). 

𝑋"(𝑡) = 𝑎) + 𝑎!𝑡 + 𝑎6𝑡6 + 𝑎F𝑡F (13) 

2.2.3 Piecewise Cubic Hermite 
Interpolating Polynomial (PCHIP) 

PCHIP interpolation also utilizes cubic 
polynomial segments, but unlike Cubic 
interpolation, it places a strong emphasis 
on preserving shape and smoothness 
between data points. In PCHIP 
interpolation, a local cubic polynomial is 
constructed at each data point, ensuring 

that these polynomials preserve both the 
values and the first derivatives of the data 
points. This guarantees smoothness 
between data points and exact 
interpolation at data points. The 
theoretical foundation of PCHIP 
interpolation incorporates principles from 
Hermite interpolation and piecewise 
interpolation. It determines the 
coefficients of each local cubic 
polynomial by calculating the slope 
between two adjacent data points 
(Rabbath and Corriveau, 2019). The cubic 
interpolation requires at least 4 points and 
it is C1 continuity. 

2.2.4 Lagrange Interpolation 
Lagrange interpolation is widely used in 
orbital interpolation (Feng and Zheng, 
2005; Hu and Fang, 2009; Pustoshilov et 
al., 2017). This method assumes that the 
trajectory of the sensor can be 
approximated by a polynomial of degree 
(n-1) between each pair of coordinates. 
The Lagrange formula is an algebraic 
expression used to fit a specific dataset to 
a polynomial (with a degree equal to the 
number of data points), providing the 
exact value of that polynomial at each data 
point. Let 𝑋), 𝑋!, 𝑋6, . . . , 𝑋- represent the 
values of the given data at times 
𝑡), 𝑡!, 𝑡6, . . . , 𝑡- , respectively. The 
estimated value of 𝑋 at any given time 𝑡, 
represented as 𝑋"(𝑡) , is expressed as 
follows (Yousif and El-Rabbany, 2007): 

𝑋"(𝑡) = 𝑎)𝑋) + 𝑎!𝑋! + 𝑎6𝑋6 +⋯+

𝑎-𝑋- = ∑ 𝑎,𝑋,-
,G)   (14) 
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where  𝑎, =
($4$%)($4$&)…($4$'(&)($4$')&)…($4$*)

($'4$%)($'4$&)…($'4$'(&)($'4$')&)…($'4$*)
	 

 

3. EXPERIMENTS AND RESULTS 

3.1 Dataset 

In this study, a total of 21 radar images 
were employed, comprising 14 TerraSAR-
X (TSX) and 7 TanDEM-X(TDX) 
acquisitions. TSX and TDX are German 

radar satellites equipped with X-band 
antennas, operated by DLR (German 
Aerospace Center). TSX was launched in 
2007, while TDX joined the radar satellite 
constellation in 2010. The study area is 
located in the northern region of Taiwan, 
characterized by significant height overlap 
between image pairs (Figure 5). The 
orbital state vectors for TSX and TDX is 
precise orbit and the time interval for 
orbital state vectors is 10 seconds. 

 

    

   (a) (b) 
Figure 5. The study area and schematic representation of SAR images. Figure 5(a) 
illustrates the locations where the images were acquired, while Figure 5(b) a showcase of 
SAR image captured on September 8, 2017. 

3.2 Impact of Interpolation Methods on 
Orbit Position 

The section involves data analysis using a 
single master image, and the calculated 
orbital positions using four different 
interpolation methods are presented in 
Table 1, with standard deviations in the 
three-axis directions exceeding 2.6 meters. 
However, the experimental precise orbit 

accuracy for TSX and TDX used in this 
study is better than 10 centimeters, 
indicating a relatively significant orbit 
error introduced by the interpolation 
methods. Figure 6 illustrates the 
distribution of orbital positions, with three 
subplots representing the X-Y plane, X-Z 
plane, and Y-Z plane, respectively. The 
black crosshairs denote the mean values 
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obtained from the four methods, while the 
black circles represent the 10-centimeter 
orbit accuracy tolerance. Furthermore, the 
linear interpolation method yields 
significantly different orbital positions 
compared to the other three methods. To 
assess whether there is a significant orbit 
error among the remaining three 
interpolation methods, we exclusively 
calculated Cubic, PCHIP, and Lagrange, 

obtaining the results presented in Table 2. 
The results indicate that these three 
interpolation methods show more 
significant errors in the X-direction, 
approximately 17 centimeters. In the Y 
and Z directions, the errors are less than 10 
centimeters, but even the smallest Z-
direction orbit error accounts for 
approximately one-fourth of the 10cm 
orbit accuracy.  

Table 1. The interpolated orbit from four interpolation methods. 
 

X(m) Y(m) Z(m) 

Linear -3555956.259 5165813.525 2841952.161 

Cubic -3555964.607 5165824.265 2841958.182 

PCHIP -3555964.983 5165824.355 2841958.168 

Lagrange -3555964.609 5165824.239 2841958.227 

Mean -3555962.615 5165821.596 2841956.684 

STD 3.673 4.660 2.612 

 
Figure 6. Diagram illustrating the orbit position distribution (4 methods). 

 



 

Asian J. Geoinfo. 24   AJG-2311006-11 

Table 2. The interpolated orbit from three interpolation methods. 
 

X(m) Y(m) Z(m) 

Cubic -3555964.607 5165824.265 2841958.182 

PCHIP -3555964.983 5165824.355 2841958.168 

Lagrange -3555964.609 5165824.239 2841958.227 

Mean -3555964.733 5165824.287 2841958.192 

STD 0.177 0.050 0.025 

 

 
Figure 7. Diagram illustrating the orbit position distribution (3 methods). 

3.3 Impact of Interpolation Methods on 
Perpendicular Baseline 

The calculation of the perpendicular 
baseline in this study involves several 
steps. Initially, the position of the master 
orbit is interpolated using the scene center 
of SAR images. Subsequently, the slave 
orbit parameters, recorded at intervals of 
one set every 10 seconds for both TSX and 
TDX, are interpolated at a finer interval of 
one set per second. Afterward, the 
intersection points of the perpendicular 
lines between the master orbit and slave 
orbit are computed. As shown in Figure 8, 

Figure 8(a) represents a schematic 
diagram of the perpendicular intersection 
points between the master image's orbit 
position and the original slave orbit; 
Figure 8(b) illustrates the schematic 
diagram of the perpendicular intersection 
points between the master image's orbit 
position and the interpolated slave orbit. 
The blue circles represent the orbit 
perpendicular intersection points, while 
the red triangles denote the orbit positions 
at two timestamps before and after the 
intersection points. Finally, the 
perpendicular baseline is determined 
using the area identity equation.
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(a) Raw Orbit (b) Interpolated Orbit 

Figure 8. Illustration of perpendicular intersection of orbit positions. 

3.3.1 External Comparison of Baseline 
Differences: This study assessed the 
impact of the four interpolation methods 
on perpendicular baseline calculations and 
compared the perpendicular baselines 
computed by ESA SNAP software (SNAP 
- ESA Sentinel Application Platform 
v9.0.0, http://step.esa.int). ESA SNAP is 
an open-source software. By examining its 
publicly available source code, one can 
discern how it computes the coefficients of 
a third-order polynomial to achieve orbit 
interpolation, specifically referred to as 
the normalized cubic polynomial. 
Regarding the calculation of the 
perpendicular baseline, the SNAP 
software computes three crucial 
measurements: the absolute distance 
between the master and slave orbits, the 
parallel baseline, and the viewing angle 
between the master orbit and the ground 
point. Through these measurements, the 
length of the perpendicular baseline can be 
derived. Specifically, it first calculates the 
baseline, then determines the parallel 
baseline by subtracting the distance from 
the master orbit to the ground point from 
the distance from the slave orbit to the 
ground point. Subsequently, it computes 

the viewing angle and utilizes the 
Pythagorean theorem to calculate the 
square of the perpendicular baseline. 
Finally, the sign of the perpendicular 
baseline is determined based on the 
magnitude of the observational angle. 
Furthermore, it traverses each pixel (line, 
pixel) of the master image to model 
baselines as a 2D polynomial of degree 1, 
aiming to achieve precise estimation of the 
perpendicular baseline. 

This study utilized the TDX image from 
January 29, 2018, as the master image, and 
the computational results are presented in 
Table 3. Among the four interpolation 
methods, linear interpolation exhibits the 
largest discrepancy compared to the 
results derived from ESA SNAP software, 
with a mean difference of up to -19 meters 
and a standard deviation of of 
disagreements exceeding 13 meters. The 
other three interpolation methods 
demonstrate closer agreement, with 
PCHIP yielding the lowest mean 
difference of -1.492 meters. The lowest 
standard deviation of baseline differences 
is observed for cubic interpolation, with a 
value of 1.313 meters. 
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Table 3. The results of perpendicular baseline computation. 

Satellite Date 𝐵&(𝑆𝑁𝐴𝑃) 
Error(m) 

Linear Cubic PCHIP Lagrange 
TDX 2018/01/29 0.00 - - - - 
TSX 2017/09/08 85.64 -4.026 -2.594 -2.369 -2.583 
TSX 2017/10/11 252.09 -28.828 -2.071 -1.663 -2.050 
TSX 2017/10/22 166.34 -27.766 -2.081 -1.667 -2.060 
TSX 2017/11/02 383.02 -34.236 -1.707 -1.333 -1.687 
TSX 2017/11/13 226.35 -32.263 -3.604 -3.208 -3.584 
TSX 2017/11/24 337.99 -31.948 -2.384 -1.993 -2.364 
TSX 2017/12/05 157.49 -20.906 -2.318 -1.928 -2.299 
TSX 2017/12/16 96.92 -13.702 -1.911 -1.555 -1.894 
TSX 2018/01/18 187.52 0.801 -1.814 -1.762 -1.811 
TSX 2018/05/30 175.26 -34.294 -0.546 -0.180 -0.526 
TSX 2018/08/04 191.26 -43.291 -2.696 -2.799 -2.697 
TSX 2018/09/06 123.01 -33.653 -2.934 -3.16 -2.943 
TSX 2018/12/03 104.46 -15.105 -3.207 -3.357 -3.214 
TSX 2018/12/14 144.79 -20.909 -3.786 -3.973 -3.794 
TDX 2017/12/27 -110.85 -8.684 -0.151 0.169 -0.136 
TDX 2018/01/07 -30.34 0.717 0.690 0.895 0.700 
TDX 2018/02/20 -44.90 -1.379 0.476 0.464 0.476 
TDX 2018/03/14 -212.90 -3.317 -0.503 -0.529 -0.504 
TDX 2018/04/05 -234.64 -2.039 -0.451 -0.224 -0.440 
TDX 2018/04/27 -66.84 -25.725 -0.092 0.322 -0.071 

  Mean -19.028 -1.684 -1.492 -1.674 
  STD 13.855 1.313 1.383 1.316 

3.3.2 Internal Comparison of Baseline 
Differences 

Comparing the perpendicular baseline 
solutions with those obtained from ESA 
SNAP, it was observed that when both the 
master and slave images are from TDX, 
the error of all interpolation methods is 
less than 1 meter, except for the linear 
interpolation. However, when the slave 

image is from TSX, the error exceeds 1 
meter. We performed separate 
computations for TSX and TDX images, 
as shown in Table 4. When both the master 
and slave images are from TSX, the mean 
difference for cubic and Lagrange 
interpolation methods is approximately -
0.8 meters, with a standard deviation of 
differences around 1 meter. Conversely, 
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when both the master and slave images are 
from TDX, the cubic and Lagrange 
interpolation methods closely match the 
results obtained from SNAP, with a mean 

difference of about 0.19 meters. In short, 
the variation of TDX’s baseline is smaller 
than TSX’s baseline. 

 

Table 4. The error of satellite-wise perpendicular baseline. 

Satellite  
Difference between the proposed method and ESA SNAP(m) 

Linear Cubic PCHIP Lagrange 

TSX 
Mean 4.110 -0.795 -0.934 -0.801 

STD 26.079 1.015 0.996 1.012 

TDX 
Mean -4.659 0.188 0.336 0.196 

STD 7.480 1.370 1.483 1.376 

 

3.3.3 Effect of Sampling Interval: The 
sampling interval for interpolation directly 
affects the density of timestamps. This 
section investigates the impact of four 
different sampling intervals on 
perpendicular baseline computation. The 
results, as shown in Table 5, indicate that 

the linear interpolation method is not 
affected by the sampling density, while the 
other three interpolation methods yield 
perpendicular baselines close to those 
computed by SNAP when the sampling 
interval is equal to or less than 1 second.  
 

Table 5. The error of the perpendicular baseline with different interpolation intervals. 

Interval(sec)  
Difference between the proposed method and ESA SNAP(m) 

Linear Cubic PCHIP Lagrange 

10 
Mean -4.659 -10.720 -10.624 -10.716 

STD 7.480 10.952 10.873 10.949 

5 
Mean -4.659 -4.224 -4.135 -4.219 

STD 7.480 3.873 3.784 3.868 

1 
Mean -4.659 0.188 0.336 0.196 

STD 7.480 1.370 1.483 1.376 

0.5 
Mean -4.659 0.375 0.519 0.382 

STD 7.480 1.272 1.416 1.278 
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4. CONCLUSIONS AND FUTURE 
WORKS 

In this study, we initially validated the 
impact of orbit errors on baseline errors 
through theoretical derivation. 
Furthermore, we emphasized that orbit 
interpolation methods directly introduce 
discrepancies into the orbit, affecting 
subsequent InSAR applications. In this 
paper, we also established a procedure for 
calculating the perpendicular baseline to 
quantitatively assess the influence of orbit 
interpolation methods on perpendicular 
baseline determination. The research 
findings indicate that orbit errors induced 
by orbit interpolation significantly impact 
centimeter-level orbit accuracy in SAR 
satellites. We further compared the 
perpendicular baseline calculation results 
using four interpolation methods and 
compared them with ESA SNAP. The 
results indicate that linear interpolation 
significantly underperforms the other 
three interpolation methods. Specifically, 
when both of the master and slave images 
originate from the same SAR satellite, the 
cubic interpolation method exhibits a 
smaller mean difference, approximately -
0.8 meters. Additionally, the interpolation 
sampling interval also directly influences 
orbit errors. Experiments show that setting 
the sampling interval for orbit 
interpolation to one set of orbit parameters 
every 1-second results in lower mean 
differences. These research findings 
provide valuable insights for selecting the 
most suitable interpolation method to 
achieve accurate baseline estimation in 

different scenarios, contributing to the 
enhancement of InSAR data processing 
and interpretation. As common 
interpolation methods such as 
Trigonometric interpolation and 
Chebyshev interpolation have not been 
discussed in this paper, future work will 
explore additional interpolation 
techniques. Additionally, the investigation 
will be extended to analyze the impact of 
orbit interpolation for InSAR-determined 
deformation. 
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