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ABSTRACT 

Analysis of pedestrian trajectory from observational data is an important approach to 
understanding microscopic pedestrian behaviors at the operation level. Based on the 
understanding, pedestrian simulation and trajectory prediction could facilitate pedestrian 
space development and pedestrian safety study. The studies can be categorized as 
conventional approaches and deep learning approaches. The conventional approaches 
model pedestrian behaviors based on known features, such as avoiding collision, and 
further improve the knowledge of those features. The deep learning-based approaches 
learn various features from data and model the pedestrian interactions through designed 
mechanisms rather than treat them as independent time series data. Although deep 
learning-based approaches achieved higher accuracies in prediction, the lack of 
interpretability due to its black-box nature is an obstacle to improving generalizable 
knowledge of pedestrian behaviors. This study aims to improve the deep learning-based 
pedestrian trajectory prediction method with the consideration of accuracy, computational 
cost, and interpretability. A spatial-temporal graph is constructed to model the coordinates 
and interactions of observed pedestrians. The graph attention network (GAT) is 
introduced into the proposed approach to obtain attention scores. GAT is effective in the 
number of learnable parameters, a measure of computational costs, and can handle 
bidirectional edges. The learned attention scores represent the degree how much a 
pedestrian is aware of one another, so they can be considered as an explicit quantitative 
representation of the interactions. With the visualization of the scores, the users, such as 
space planners or traffic engineers, can perceive how the deep learning model learned the 
interactions. Our proposed approach is validated on a benchmark dataset, ETH/UCY. 
Compared to the baseline models, the low computational cost is achieved owing to the 
efficiency of the GAT; the high accuracy is shown by evaluating average displacement 
error (ADE) and final displacement error (FDE). Finally, the predictions and the attention 
scores are visualized to provide an interpretation of pedestrian interaction learned by the 
deep learning model. 
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1. INTRODUCTION 

Studying pedestrian behavior is essential 
for the design of safe and comfortable 
walking spaces. For example, simulation 
of pedestrians in public spaces and 
analysis of pedestrian conflicts are 
developed based on the fundamental 
understanding of pedestrian behaviors. 
Safe and efficient autonomous vehicle and 
robot navigation also rely on the 
understanding of pedestrian behaviors. 
Recently, the advancement of cameras and 
image-sensing methods made the 
observation of pedestrian trajectories 
easier and more accurate. The centimeter-
level observations of the coordinates of 
pedestrians enable more detailed analyses 
of microscopic pedestrian behaviors, and 
it is especially important for operation-
level behaviors, which consider every 
instantaneous decision of a pedestrian. 

The studies on operation-level pedestrian 
behaviors could be categorized into 
conventional rule-based approaches and 
deep learning-based approaches. In both 
types of approaches, it is common to 
consider that a pedestrian is impacted by 
the past trajectory itself, the environment, 
and the other pedestrians or other agents in 
the surroundings. Conventional rule-based 
approaches are usually designed to 
recognize several known behaviors, such 
as avoiding collision and grouping 
behaviors. Those behaviors are 
accumulated by physical or statistical 

principles, so the effect of each behavior 
to the outcomes are clear to understand. 
Deep learning-based approaches mainly 
learn various high-dimensional features 
from observed data and could achieve 
higher prediction accuracy. However, the 
relationship between the input factors and 
the outcomes are difficult to understand 
because of the large amount of the non-
linear functions. 

From the viewpoint of understanding 
pedestrian behaviors, deep learning-based 
approaches provide insufficient 
interpretation to themselves for improving 
generalizable knowledge. Those models 
would not be useful for human users, such 
as space planners and architectures, 
because the lack of understanding leads to 
the low reliability. Thus, designing 
interpretable deep learning-based 
pedestrian trajectory modeling methods 
are desired. 

This study aims to design a deep leaning 
model for pedestrian trajectory prediction 
that the interactions between pedestrians 
can be quantitatively interpreted and 
visualized. Given the observations of 
pedestrians’ trajectories for a constant 
period of time, the model predicts the 
future trajectories for the following 
constant period of time. In this study, only 
the effects between pedestrians are 
considered. Those of other agents 
(vehicles) or the environment are omitted, 
so the surrounding information is not 
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required. Both the observation and the 
prediction are in several seconds, focusing 
on the operation-level pedestrian 
behaviors. Three requirements – high 
prediction accuracy, low computational 
cost, and high interpretability 
simultaneously – are expected to be 
achieved. The requirement of high 
accuracy indicates sufficient expressive 
power, low computational cost enables 
implementation in real applications, and 
high interpretability enhance the 
understanding on the model. 

The proposed deep learning model is 
based on a spatial-temporal graph 
structure representing the time series of 
coordinates of each pedestrian, which 
provides a clear basis for employing the 
attention mechanism. The attention 
mechanism is a type of method that can 
explicitly and quantitatively model the 
attention scores, the degree of importance, 
between elements in a deep learning 
model. In this study, it is used for 
representing the attention that each 
pedestrian pays to the others. The 
visualization of attention scores is 
demonstrated for interpreting pedestrian 
interactions. Despite the visualization of 
attention mechanisms cannot directly 
translate to known behaviors such as 
“avoiding collision with someone” or 
“following someone,” it enables human 
users to perceive how deep learning 
models quantitatively model the 
interactions. It opens the discussions about 
the characteristics and rationality of the 
model. 

In the following sections, Section 2 briefly 
introduces pedestrian behavior and 
trajectory prediction studies, progresses to 
the interpretation and visualization of 
those deep learning-based approaches, and 
focuses on the advantages and difficulties 
of incorporating attention mechanisms 
and graph neural networks in prediction 
models. Section 3 states the framework 
and elaborates on our proposed method. 
Section 4 first introduces the benchmark 
dataset and accuracy metrics used for 
validation and the quantitative results, 
shows the visualization of the attention 
mechanisms, and discusses the 
interpretation. Section 5 concludes this 
study.  

2. RELATED STUDIES 

2.1 Pedestrian Behavior and Trajectory 

Prediction 

Pedestrian behavior and trajectory 
prediction study on how the trajectories of 
humans are determined. Based on the 
observed trajectories and other factors, 
such as obstacles in the environment or 
other humans and vehicles, a behavior 
model is constructed and could predict 
future trajectories.  

2.1.1 Conventional (Rule-Based) 
Approaches 

In conventional pedestrian behavior 
studies, the objectives are usually to 
identify various types of behavior and 
their effect to set some rules to form a 
behavior model, and the future trajectories 
can be predicted following the model. 
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Microscopic and operational-level 
pedestrian models determine the 
behaviors of each pedestrian, which 
generally include avoiding collision, 
following, and grouping. The two major 
methods are physical-based methods 
(Helbing et al., 2002), which consider 
pedestrians as particles and behaviors as 
forces, and discrete choice models (Robin 
et al., 2009), which consider each future 
step as a choice by the pedestrian itself 
depending on the factors. Investigating the 
observed trajectories has improved the 
knowledge about the behaviors, but the 
models are limited by the known 
behaviors. 

2.1.2 Deep Learning-Based Approaches 

Taking observed trajectories as well as 
environment images as input and future 
trajectories as output, deep learning 
models can generally predict future 
trajectories with training data by 
minimizing error functions. Alahi et al. 
(2016) proposed a pedestrian trajectory 
prediction problem and its corresponding 
evaluation data and metrics. Although the 
problem considering only pedestrian 
trajectories can be solved as a simple time-
series prediction task, they have shown the 
necessity of modeling the trajectories 
dependently by introducing the social 
pooling structure. This study has achieved 
a higher prediction accuracy than rule-
based models or simple time-series 
prediction models, and it is followed by 
studies including Social GAN (Gupta et al., 
2018) and Reciprocal Net (Sun et al., 
2020). The shortage of pooling structure 

was that the impact from different 
pedestrians is averaged or only the largest 
one is considered, which can be conquered 
by approaches considering pedestrians 
with separate weights. A major way to 
learn the weights is to adopt the attention 
mechanism, which is further introduced in 
the following. The deep learning-based 
approaches can learn to produce high-
accuracy predictions without prior 
knowledge of behaviors and are expected 
to capture high-dimensional features. 
However, the models do not explain 
themselves well, thus not producing useful 
and generalizable knowledge of 
pedestrian behaviors. 

2.2 Interpretation and Visualization of 

Pedestrian Trajectory Prediction Methods 

Deep learning models generally lack 
interpretability due to the large amount of 
nonlinear calculation. However, 
interpretability is quite important for users 
who access the model in terms of 
informativeness and transferability 
(Barredo Arrieta et al., 2020). 

To achieve the interpretation, two 
categories of approaches can be used: (1) 
making the model itself understandable 
and (2) applying methods to explain the 
relationship between the inputs and 
outputs. The former are also called model-
specific methods or interpretable methods, 
and the latter are also called model-
agnostic methods (Molnar, 2023). 

2.2.1 Model-Specific Methods 

The model-specific methods usually refer 
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to models such as linear regression, 
logistics regression, or decision tree, of 
which the parameters could directly be 
understood by users. While the methods 
are too simple so unable to model detailed 
features, making part of a complex model 
understandable is also proposed.  

Regarding the pedestrian trajectory 
prediction studies, Vemula et al. (2018) 
proposed the first pedestrian trajectory 
prediction model that uses the attention 
mechanism to show the quantity of each 
pedestrian focusing on the others and 
providing the visualization of the quantity 
in some steps. The attention-based 
approach concept is adopted and extended 
in further studies (Huang et al., 2019; 
Mohamed et al., 2020), but as the amount 
of attention layer gets larger or the other 
part of the models gets more complex, the 
effect of learned attention may become 
weaker. 

In another way, Kothari et al. (2021) 
proposed to predict the probabilities of 
different categories of behaviors, which is 
similar to the conventional discrete choice 
model proposed by Robin et al. (2009), so 
users may understand the proportion of 
each type of behavior contributing to the 
result. Nonetheless, they do not provide 
any explanations of the mechanism of the 
model itself. These studies have shown 
directions to approaching interpretability, 
though there is still room for improvement 
in clarifying every part of deep learning 
models and relating to physical meanings. 

2.2.2 Model-Agnostic Methods 

Model-agnostic methods are able to 
explain models regardless of their model 
structures or the problems being solved. 
While implementing those methods, users 
choose which features and data are going 
to be interpreted. Still, few studies were 
found to apply model-agnostic methods in 
pedestrian trajectory prediction. Makansi 
et al. (2021) and Kalatian & Farooq (2022) 
adopted Shapley values to explain 
different features. Kalatian & Farooq 
experimented with pedestrians walking on 
roads and showed some relationships 
between results and surrounding factors. 
Makansi et al. (2021) studied several 
pedestrian benchmark datasets and models. 
Surprisingly, they claimed that not many 
interactions are actually learned by the 
deep learning model except for a sports 
dataset. 

2.3 Attention-Based Pedestrian Trajectory 

Prediction 

As mentioned above, the attention-based 
approaches have the advantage of 
considering the interactions of different 
pedestrians separately, and the parameter 
of attention score could serve as an 
explanation of how the model learns the 
effects. In this section, the related 
attention-based approaches are explored. 

Social Attention (Vemula et al., 2018) is an 
early work using spatial-temporal graph 
structure to store the data for a clear 
representation. The model encoded the 
node features by recurrent neural networks 
(RNNs) and inserted attention modules on 
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the edges to calculate both temporal 
relations and pedestrian interactions. 
Considering graph neural networks 
(GNNs) would be more effective, STGAT 
(Huang et al., 2019) has adopted a graph 
attention network (GAT) in spatial 
relationships but still an RNN for temporal 
relationships, which could be not fast 
enough because of its recurrent calculation. 
On the other hand, Social-STGCNN 
(Mohamed et al., 2020) has adopted a 
variant of graph convolutional network 
(GCN) to weight each interaction 
separately with hand-craft functions and 
has used temporal convolutional neural 
networks (CNNs) to construct a fast and 
lightweight model. However, GCNs are 
unable to handle bidirectional interactions 
and, unlike Social Attention and STGAT, 
do not have learnable weights of attention 
scores. Thus, the authors propose a model 
with fast and lightweight prediction parts 
similar to Social-STGCNN, but also adopt 
a GAT to learn essential features of 
interactions of each pedestrian. This study 
extends the preceding one and further 
investigates the GAT part and the learned 
parameters. 

3. METHOD 

Section 3.1 first briefly describes the 
framework adopted from the preceding 
study. Section 3.2 takes a closer look at the 
GATs adopted and compared with related 
GNN methods. 

3.1 Framework 

The proposed model takes the observed 

trajectories of pedestrians as input and the 
trajectories to be predicted as output. 
Formally, they are written as Eq. 1. No 
other factors such as obstacles or vehicles 
are considered. The model consists of the 
following six steps. 

𝑃 = {𝑝!"	|	𝑛	 ∈ {1, … , 𝑁}, 𝑡 ∈
{1, … , 𝑇#$%, 𝑇#$%&', … , 𝑇()*+}} (1) 

where 

𝑁 is the number of pedestrians, and 𝑛 is 
the index of pedestrians. 
From 1 to 𝑇#$%  are the time steps of 
observation and from 𝑇#$%&'  to 𝑇()*+ 
are the time steps of prediction. 
𝑡 is the index of time. 
𝑝!"  is the (𝑥, 𝑦)  coordinates of 
pedestrian 𝑛 in time step 𝑡. 

3.1.1 Pre-processing 

Deep learning models are prone to 
gradient explosion or elimination due to 
the large variation of the raw input, so the 
input values are processed. In this study, 
one's own viewpoint of each pedestrian is 
considered, and the displacement of each 
step relative to the pedestrian's direction of 
the first movement is used. The scale of 
the values is kept because they indicate the 
actual length. 

3.1.2 Building Spatial-Temporal Graph 

The graph is constructed as illustrated in 
Figure 1. Each node stores the 
displacement of each pedestrian in each 
time step. Two types of edges – spatial 
edges and temporal edges – are used to 
represent the interactions between 
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pedestrians and the sequential order of a 
pedestrian. The spatial edges are used for 
training GAT. They connect all the pairs of 
pedestrians in the same time step (time 
section), forming complete graphs. 

 

Figure 1. Illustration of the proposed 
spatial-temporal graph of an example of 
four pedestrians in three time steps. The 
spatial edges are shown in blue solid lines 
and orange temporal edges in orange 
dotted lines. 

3.1.3 Spatial Feature Extraction 
(Encoding) 

The spatial feature is first learned by a 
GAT, which exchanges the information 
between pedestrians. This step can be 
considered as each pedestrian observing 
the others and being affected by them. The 
interaction refers to the bidirectional 
effects that each pedestrian feels from 
others and gives to them. This extraction 
is done for each time step separately but 
sharing the learnable parameters. 

3.1.4 Temporal Feature Extraction 
(Encoding) 

The temporal feature extraction is done for 
each pedestrian separately by a sharing-
weight CNN. The CNN has a width of 

three in the temporal dimension, which 
physically means to consider the effect of 
only the time steps right before and right 
after. After the two extraction steps, a 
feature matrix of each pedestrian is 
outputted, meaning a summary of the 
interaction from the others and the past 
trajectories of itself. Considering a model 
predicting trajectories as generating 
sequences, these two feature extraction 
steps could also be called encoding steps, 
and the following sequence generation 
step could also be called as decoding step. 

3.1.5 Prediction (Decoding) 

Pointwise CNNs are used for generating 
predictions, which is also considered as 
decoding the feature to a sequence. 
Although using simple CNNs rather than 
a GNN, the permutation equivariance of 
graph-structure data is preserved. This 
step does not deterministically produce the 
predicted coordinates or displacements. 
Rather, a Gaussian distribution of the 
possible displacement is assumed, and the 
parameters of the distribution are 
predicted. 

3.1.6 Sampling from Distribution 

The predicted trajectories are sampled 
from the distribution in the previous step 
and accumulated. Considering multiple 
possibilities with some randomness, 𝐾 
trajectories of each pedestrian are sampled. 

3.2 Interaction Feature Extraction through 

GATs 

This subsection focuses on the “spatial 
feature extraction” step using GAT, which 
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is mentioned above. Firstly, GAT, a 
category of GNNs, proposed by related 
studies is introduced. GNNs are effective 
machine learning methods applied to 
graphs. The function of GNN in our model 
extracts and accumulates features of each 
node, representing a pedestrian in a 
specific time step, from all the adjacent 
nodes. The common form of such GNNs 
can be written as Eq. 2. Figure 2 illustrates 
an example of a GNN applied on a node. 

𝒉,- = 𝜎7Σ.∈{1(,)∪,}𝛼,.𝑾𝒉𝒋; (2) 

where 

𝒉. is the feature vector of node 𝑗, and 𝒉,- 
is the vector of node 𝑖 after update. 𝑁(𝑖) 
is the set of adjacent nodes of node 𝑖. 𝑾 
is a learnable weight for adjusting 
dimensions of node features. 𝛼,.  can be 
a hand-crafted or learnable function. 𝜎(∙) 
is a non-linear activation function. 

 

Figure 2. Illustration of applying GNN on 
a node i. 

The GNNs adopted in our model are (a) 
the original form of GAT (Veličković et 
al., 2017) and (b) GATv2 improved by 
Brody et al. (2021). They are designed to 
learn the attention score 𝛼,. shown in Eq. 
3 as the weight for accumulation. 

𝛼,. = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥7𝑒,.; =
789	(*!")

∑ 789	(*!#)#∈%(!)
 (3) 

(GAT) 𝑒,. =
LeakyReLU(𝑎⃗<M𝑾=><ℎ?OOO⃗ PP𝑾=><ℎ@OOO⃗ Q; (4) 

(GATv2) 𝑒,. =
𝑎⃗<LeakyReLU(𝐖=><Mℎ?OOO⃗ PPℎ@OOO⃗ Q; (5) 

For any node i, the attention score to each 
adjacent node j is a proportion calculated 
by the softmax function (the multiple-
dimension logistic function) considering 
all the adjacencies of nodes i to k. Note 
that every attention score is a scalar. The 
𝑒,.value is defined as Eq. 4 for GAT and 
Eq. 5 for GATv2. They both consider the 
value depends on the features of the 
adjacent pair, but the original GAT 
produces identical attention scores 
regardless of the feature of node i, which 
is also called query node in attention 
studies, in some circumstances. GATv2 
has proposed to avoid this issue by giving 
different learnable weights to node i 
(query node) and node j (key node) and the 
usage of nonlinear functions. The 
attention score 𝛼,.  thus represents each 
pedestrian of node i paying different 
degrees of attention to the pedestrian of 
node j based on their displacements.  

Besides, the GNN adopted in Social-
STGCNN could be written as Eq. 6 
following the definition in Eq. 2. It does 
not contain learnable parameters in 𝛼,. , 
but uses a hand-craft function and graph 
Laplacian function, which limits the 
interaction to distances and is indirectional. 

𝛼,. = Graph	Laplacian(1/‖𝑝!, −
𝑝!
. 	||A 	+ 𝜖)  (6) 
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where 𝜖  is a small number to avoid 
division by zero. 

4. RESULTS AND DISCUSSION 

4.1 Benchmark Datasets 

The benchmark datasets used in this study 
are ETH (Pellegrini et al., 2009) and UCY 
(Lerner et al., 2007) datasets. Because 
these datasets mainly consist of 
pedestrians walking on campus or streets 
with very few vehicles, they are suitable 

for studying interactions between 
pedestrians and ignoring the other agents. 
The experiments are done through leave-
one-out cross-validation by using the pre-
processed data provided by Social-
STGCNN (Mohamed et al., 2020). There 
are from 2 to 57 pedestrians in each 
constructed graph; the scenes of only a 
single pedestrian are omitted because 
there is no interaction that can be learned. 
The number of graphs in each set is shown 
in Figure 3.

 

Figure 3. Number of graphs in the pre-processed ETH/UCY dataset. (The names in the 
parenthesis are the names of testing sets.) 

 
4.2 Accuracy Evaluation 

The error metrics of average displacement 
error (ADE) and final displacement error 
(FDE) (Alahi et al., 2016), defined in Eq. 
7 and 8, are used to evaluate the accuracy 
of our proposed models. Considering the 
multiple predicted trajectories, minADE20 
and minFDE20, which take only the best 
trajectory among multiple predictions, are 
used. In this study, we would like to focus 
on interpreting the mechanism inside the 
proposed model, so the metrics are only 

for assessing whether our proposed model 
is functioning to predict trajectories. 
𝐴𝐷𝐸 =
∑ ∑ B((

)CD((
)B*(∈{,-./01,	…,,56789	

)∈{1…%}

1×(<5678D<-./01)
…….(7) 

𝐹𝐷𝐸 =
∑ B((

)CD((
)B*)∈{1…%}

1
, 	𝑡 = 𝑇()*+…(8) 

where 𝑝!"d is the prediction value of 𝑝!". 

The minADEAF , minFDEAF , and the 
number of parameters of the models are 
reported in Figure 4. Figure 4-a lists the 
minADEAF  and minFDEAF  of our 
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models and the baseline model Social-
STGCNN, and also plots those of the 
related studies which are evaluated on the 
same dataset. Figure 4-b plots the number 
of parameters to the minADEAF  and 
minFDEAF . A logarithm axis is used for 
the number of parameters (vertical axis) 
because of the large variance of the 
numbers. From both figures, our models 
performed better than the baseline method, 
which has a similar framework to ours, as 
well as most of the related studies. Our 
models also require fewer parameters, 
indicating the computational efficiency. 
Compared to the improvement from the 
related studies, we observed no visually 

significant differences of our two types of 
models in minADEAF and minFDEAF to 
the number of parameters. We supposed 
the metrics insensitive to the GAT models 
because of two reasons. First, the softmax 
nonlinear function in Eq. 3 make the 
difference in percentage small, especially 
when the graphs are complete graphs. 
Second, the metrics evaluating only the 
minimum errors are unable to assess all of 
the multiple predictions, including the 
variance of the predictions. Nevertheless, 
their different definition of formulas could 
reflect different assumptions to the 
behaviors, and the effect is identified in 
the following visualizations. 

 

 

Figure 4. Comparison of (a: top) accuracy and (b: bottom) number of parameters of our 
models and related studies 
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Figure 5. Visualization of prediction results and attention scores 
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4.3 Visualization of Interactions 

Some of the results are visualized in 
Figure 5. The following introduces the 
meaning of the figures, taking the first set 
of results in Figure 5 as an example. The 
upper right figure shows the observed and 
ground truth with the background image 
of the observed scene. Each color 
represents a pedestrian; the colors have no 
specific meaning. The four figures on the 
left shows the prediction results of two 
models and the attention scores. The 
colors are corresponded to those in the 
ground truth figure. The thick solid lines 
are the observed trajectories, the thin solid 
lines are the predictions, and the dashed 
lines are the ground truth of predictions. 
Each column shows the same prediction 
result. The upper row is the model 
adopting the original GAT, and the bottom 
row is the model adopting GATv2. The 
circles show the attention scores. The “x” 
symbol denotes the pedestrian concerned 
with, which is the query node in GATs. 
The solid-line circles show the attention 
scores, which is proportional to the radius 
of that circle. The colors of solid-line 
circles are also corresponded to the same 
color of trajectories. For each color solid-
line circle, a gray dashed-line circle 
represents the radius if the attention scores 
are equal for all the pedestrians. In this 
nine-pedestrian scene, the radius 
represents 11.11%. The first and second 
column shows the same prediction results 
but the attention scores focusing on 
different pedestrians. 

Comparing two columns in each set of 
Figure 5, the GAT model tends to give the 
very similar set of the attention scores 
regardless of the query nodes, where the 
sizes of circles are almost the same pattern 
on the left and right figure. The values of 
attention scores may not be exactly the 
same but have the same order of quantities. 
To emphasize this effect, the attention 
scores are plotted on the right in the 
second and third sets of Figure 5. Brody et 
al. (2021) figure out this “static attention” 
problem and proposed the GATv2 method 
to alleviate it. The static attention problem 
is due to using the same weight, the 𝑾=>< 
in Eq. 4, for the query and key, ℎ?OOO⃗  and ℎ@OOO⃗ . 
It results in the same order of quantities for 
attention values. GATv2 uses different 
weights for the query and key, so the 
attention scores can be different except the 
model learns the same value. In this study, 
the original GAT means each pedestrian 
perceives the others in the same pattern, 
regardless of itself. In other words, each 
pedestrian attracts the same degree of 
others’ attention. While in past studies, 
interactions are believed to be dependent 
on different pairs of pedestrians, such as 
relative directions and distances, the GAT 
model could not reflect this basic 
assumption. Thus, from this visualization, 
the GATv2 model was found more 
suitable to model pedestrian interactions. 

Some characteristics are also noticed from 
the visualization. For example, the GAT 
model seemed to produce smaller 
attention scores for pedestrians of smaller 
displacements, and larger attention scores 
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for larger displacements. Conversely, the 
same trend was not noticeable in the 
GATv2 model. Besides, the query 
pedestrians of small displacements (the 
green one in the second set and the blue 
one in the third set of Figure 5) usually 
have more equal attention to themselves 
and others. It is guessed that none of the 
pedestrians could create a large impact on 
pedestrians who are not heading in a 
specific direction. 

5. CONCLUSION 

This paper presents a deep learning and 
attention-based approach for predicting 
pedestrian trajectories. The proposed 
models are efficient with lower parameters 
and more accurate than the baseline model. 
The GATs employed in this approach 
enable the quantification and visualization 
of pedestrian interactions. Different from 
conventional pedestrian modeling 
methods, the interactions between all pairs 
of pedestrians modeled by the GATs 
consider all the pedestrian pairs in the 
scene simultaneously. It is expected to 
improve the understanding of scene and to 
facilitate the navigation of autonomous 
vehicles and robots. For instance, a robot 
can not only consider avoiding collision 
with pedestrians in current time step, but 
also keep tracking of any pedestrian that is 
affected to moving toward it, and even 
warn someone that was not sufficiently 
caring about the robot.  

By visualizing and investigating the 
interactions, different trends in attention 
scores due to different types of GATs were 

found. The visualized attention scores also 
clearly illustrated the issue of similar 
scores of the GAT method. Through the 
experiments and visualizations, it is 
discovered that the model using the 
original GAT could not represent the 
interactions suitably. It could be seen as an 
improvement in interpretability that 
allows users to determine whether this 
issue is contrary to the desired 
assumptions. 

Nevertheless, although the attention 
scores have been visualized, the reasons 
for the trends in attention scores remain 
unclear. Therefore, interpreting the causal 
effects of pedestrian interactions is a 
future task. 
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