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Abstract 

Despite their ecological importance, seagrass beds in Vietnam have been subject to rapid 
decline due to coastal development. While there have been attempts to monitor seagrass 
beds at individual sites in Vietnam in the past, these studies have been limited in their 
ability to provide a comprehensive, spatially explicit, and temporally consistent 
understanding of the extent and distribution of these habitats across the entire nation. To 
address this issue, the research utilized Landsat imagery spanning a period of over 30 
years to provide a spatially explicit and continuous inventory of seagrass beds and 
quantify land cover changes that have led to seagrass loss. The methodology of the study 
involved several steps. Firstly, Landsat images over the coastline of Vietnam between 
1985 and 2019 were filtered to minimize cloud contamination. Secondly, the selected 
images were preprocessed to reduce the effects of the water column using Hedley's sun 
glint correction and Matsunaga's Bottom Index. These preprocessed images were then 
classified on a scene-by-scene basis using the Random Forest classifier and composited 
over each five-year period to produce distribution maps. Finally, the distribution maps 
over time were compared to reveal changes in seagrass distribution. The results of the 
study indicate that a total of 36,185 ha of seagrass beds in Vietnam were mapped before 
1990, but only 17,081 ha remained after 2015. Most meadows lost 40-85% of their area, 
mainly due to land reclamation. The overall accuracies ranged from 75.8% to 90.4%, 
while producer's and consumer's accuracy for seagrass ranged from 40.8% to 77.9% and 
37.1% to 73.4%, respectively. 
 
Keywords: blue carbon ecosystem; Google Earth Engine; marine habitat.; seagrass 
mapping; land use land cover change 
  
1. Introduction 

Seagrasses are marine flowering 
plants that inhabit various coastal areas 
around the world. With their fast growth 

rate and extensive root networks, seagrass 
meadows play vital roles in preventing 
coastal erosion, supporting fisheries, 
improving water quality, and mitigating 



 

Asian J. Geoinfo. 23  2211011-2 

climate change (Unsworth et al., 2019). In 
fact, the carbon burial rate of seagrass 
beds per hectare is 35 times higher than 
that of terrestrial (Duarte et al., 2010; 
Fourqurean et al., 2012; McLeod et al., 
2011). Despite their significant 
environmental importance, seagrass 
distribution is decreasing rapidly, with an 
estimated 7% loss per year globally 
(Waycott et al., 2009). This loss leads to 
the decline of ecosystem services and the 
release of carbon sequestered in seagrass 
beds back into the atmosphere. It is 
therefore critical to monitor seagrass 
distribution and prevent further losses. 
However, there are still significant 
uncertainties in seagrass monitoring, 
particularly in the Tropical Indo-Pacific 
region (Unsworth et al. 2019; Sudo et al. 
2021).  These uncertainties hinder the 
accurate quantification of seagrass 
ecosystems and their contributions to 
global processes such as carbon 
sequestration. 

However, there are gaps in seagrass 
monitoring in tropical waters, particularly 
in the Indo-Pacific region. With 157.5 km2 
of seagrass and the fourth largest seagrass 
bed area in Southeast Asia, Vietnam is 
home to 4.3% of the total seagrass area 
and 14 species, making it the fourth most 
diverse in the region (Sudo et al., 2021). 
The seagrass ecosystem services in 
Vietnam are valued at 72 million dollars, 
largely due to their role in the fishery 
(Nguyen, 2013). Despite their importance, 
seagrass in Vietnam is decreasing rapidly. 
An estimated 45.4% of the monitored 

seagrass area in Vietnam has been lost, 
between 1997 and 2009 (Nguyen, 2013). 
Some seagrass beds, such as those in Gia 
Luna, Giang Ninh. have completely 
disappeared, going from 500 hectares 
before 1995 to 0 hectares after 2003. 
Monitoring of seagrass in Vietnam has 
largely relied on limited field surveys, 
leading to uncertainty in its spatial and 
temporal patterns. (Nguyen, 2013).  

Satellite- and airborne-based remote 
sensing has been widely recognized as an 
effective and cost-efficient method for 
monitoring seagrass (Hossain et al., 2015; 
Hossain and Hashim, 2019; T. D. Pham et 
al., 2019). Multiple techniques have been 
developed to enhance the reflectance 
signal of benthic cover impacted by the 
water ccolumn (Lyzenga, 1978; Lyzenga, 
1981; Matsunaga, Hoyano, and Mizukami, 
2000; Sagawa et al., 2010; J. D. Hedley, 
Harborne, and Mumby, 2005).  
Classification techniques have also been 
refined and have focused on improving 
accuracy, increasing long-term coverage 
and detailed temporal resolution and 
expanding the spatial coverage of 
mapping (Lyons, Phinn, and Roelfsema, 
2011; Phinn et al., 2018; Lyons, Phinn, 
and Roelfsema, 2010; Lyons, Roelfsema, 
and Phinn, 2013; Roelfsema et al., 2013; 
Traganos and Reinartz, 2018; Traganos et 
al., 2018; Topouzelis et al., 2018). In 
addition, there have been efforts to map 
more detailed indicators of seagrass 
meadows, such as above-ground biomass 
and density cover (Roelfsema et al., 2014; 
Misbari and Hashim, 2016; Hedley et al., 
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2017; Sani and Hashim, 2019). These 
technical advances provide the foundation 
for using remote sensing images to 
monitor seagrass distribution. 

Meta-studies have attempted to 
provide a comprehensive overview of 
seagrass beds in Vietnam by collecting 
different studies of individual sites in 
Vietnam using remote sensing and field 
surveys (Cao et al., 2012; Sudo et al., 
2021). While these collections of studies 
are useful for understanding local changes 
at specific sites, they may contain different 
methodologies, which limits the 
comparability of results. To produce 
comprehensive monitoring across the 
entire coastline, remote sensing has 
significant potential due to its coverage 
and repeatability. 

Remote sensing-based studies have 
been conducted for seagrass in Vietnam at 
individual sites, such as multitemporal 
change detection of seagrass beds using 
Landsat TM, ETM+, and OLI imagery in 
Cam Ranh Bay, Van Phong Bay, and Ninh 
Hai (Vo et al., 2020; Quang et al., 2017; 
Lau, Chen, and Phuoc, 2013; Hoang, 
Luong, and Ho, 2020; Cao, Dam, and Do, 
2005; Cao et al., 2012; Cao, Dam, and 
Tran, 2019). However, there has been no 
study that covers both national spatial 
coverage and a decadal time series for 
Vietnam or other Southeast Asian 
countries. This has been challenging, 
especially in tropical coastal waters, due to 
the varying water quality, which limits the 
consistent monitoring of a wide area 
(Hossain et al., 2019). This gap hinders the 

development of a national conservation 
strategy, which requires understanding of 
the spatial and temporal patterns of 
nationwide seagrass distribution using a 
consistent methodology. 

This research aims to address the lack 
of a comprehensive monitoring 
framework for seagrass in Vietnam by 
establishing a cloud computing-based 
framework for national scale seagrass 
monitoring and analyzing the spatial and 
temporal patterns of seagrass distribution 
changes in Vietnam over a 30-year period 
(1985-2019). By examining seagrass 
distribution at this spatial and temporal 
scale, we can gain a better understanding 
of how seagrass distribution has changed 
along Vietnam's entire coastline and lay 
the foundation for studying the nation's 
seagrass biomass inventory and improving 
conservation policy. This framework may 
also be beneficial to other countries with 
similar coastal conditions. 

 
2. Study Area and Materials 
2.1 Study Area 

Vietnam boasts a diverse array of 
coastal environments, with a 1,650 km 
long coastline. The country is home to 14 
distinct seagrass species, including 
Enhalus acoroides, Thalassia hemprichii, 
Halophila ovalis, Halodule uninervis, and 
Zostera japonica. The South-central coast 
and Phu Quoc Islands exhibit the highest 
level of seagrass species diversity, with 9 
species present. Conversely, the North-
central coast and Northeastern regions of 
Vietnam typically have a lower diversity 



 

Asian J. Geoinfo. 23  2211011-4 

of seagrass species, which are primarily 
found near river mouths or lagoons and 
consist of only two species: Halophila 
ovalis and Zostera japonica. Vietnam's 
climate is characterized by two main 
seasons: dry and rainy. Seagrass growth is 
most robust during the dry months, as the 
longer hours of sunlight, lower turbidity, 
and higher salinity levels promote growth. 
Conversely, during the rainy season, 
increased precipitation leads to increased 
discharge from rivers, resulting in 
elevated turbidity and decreased salinity 
levels in coastal waters, particularly in 
closed bays and lagoons. These conditions 

are unfavorable for seagrass growth, 
causing a slowdown or die-off. As the 
rainy season ends, waters recover their 
clarity and salinity, allowing for seagrass 
to regrow or grow from deposited seeds. 
However, this phenomenon is less 
pronounced in exposed coastal areas 
without nearby river discharge, as 
turbidity and salinity levels do not 
fluctuate significantly (Nguyen, 2004; 
Nguyen, 2013). The months when rainy 
season occurs differ among the regions in 
Vietnam, as detailed in Table S1. 

 

 

 
Figure 1: Landsat scenes (A-G) where seagrass could be identified from Landsat 
images, and specific locations (i-v) to show the training points of seven classes as 

ground reference data. 
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2.2. Data collection  
2.2.1. Landsat Imagery 

Seagrass mapping requires 
multispectral satellites with water 
penetrating bands, and national scale 
monitoring require satellites with broad 
spatial coverage, continuous temporal 
coverage (Pham et al., 2019; Hossain and 
Hashim, 2019). Commercial satellites are 
available, but for the scale of mapping 
required, it was impractical to purchase 
the data. Among satellites for which the 
data is publicly accessible, Landsat 4-9, 
Sentinel-2 and MODIS have been used for 
seagrass mapping. However, as Sentinel-2 
constellation has only been launched in 
2015, it is not suitable for decadal 
mapping. MODIS has coarse resolution in 
their VNIR bands, making it inferior to 
Landsat for seagrass mapping. Landsat 
was chosen for its overall suitability in 
terms of resolution, availability and 
accessibility. 

While Landsat 4, 5, 7, 8 had data in 
the study period, Landsat 4 data were not 
chosen because the data was scarce for the 
study area, and Landsat 7 data were 
affected by scan line error. Landsat 
Surface Reflectance products of Landsat 5 
and 8 were used for this analysis. These 
multispectral images are in the visible and 
near infrared bands (blue, green, red, near 
infrared, shortwave infrared). Images in 
those bands have 30 meters spatial 
resolution, and are collected at 16 days 
intervals. Landsat 5 started collecting 
images from 1984 to 2013 and Landsat 8 
from 2013 until now, hence they were 

chosen to provide a continuous monitoring 
of Vietnam's coastal area. Those products 
have been geometrically and 
atmospherically corrected using the 
Landsat ecosystem disturbance adaptive 
processing system (LEDAPS) algorithm 
for Landsat 5 and Land Surface 
Reflectance Code (LaSRC) algorithms for 
Landsat 8 (Schmidt et al., 2013; Vermote 
et al., 2018). Following literature review 
of known seagrass sites in Vietnam, 
Landsat images along the coastline of 
Vietnam was visually inspected to identify 
seagrasses. However, only in the 7 
Landsat scenes as indicated Figure 1 could 
we identify seagrass from visual 
interpretation. The remain areas could 
contain seagrass, as reported in literature 
survey, but were not mapped (Table S4). 
496 images in 7 path-row (Table 4) were 
analyzed as batch processed on a cloud-
based platform of Google Earth Engine. 
Study areas are covered by just one image. 
Occasionally, at the boundary of images, 
where there are overlaps, images were 
processed separately, and the mode of 
classification was used to present the 
result. 

Our analysis of Landsat 5 and 8 
collections revealed that the region 
captured by the satellite images may be 
offset by up to 20 km, with some outliers 
reaching 60 km, as seen in the 
"LANDSAT/LC08/C02/T1_L2/LC08_12
4049_20130405" and 
"LANDSAT/LC08/C02/T1_L2/LC08_12
4050_20130405" images. These 
discrepancies are likely the result of orbit 



 

Asian J. Geoinfo. 23  2211011-6 

shifts. However, the geometric correction 
applied to the images ensures that the 
features within the images are not affected 
by geometric errors and our analysis is not 
impacted by these offsets. 

Images were selected to represent the 
dry season for each area: March to 
September in the northern and southern 
central coastal areas, and from November 
to April of the following year in the 
southern coastal area (Nguyen, 2004). 
Images that with more than 10% of their 
area masked as cloudy pixels were 
discarded from further processing. 
 
2.2.2 Ground reference data 

Training data were chosen via 
referring to previous publications, field 
surveys, visual interpretation, and 
referencing to high-resolution imagery 
available on Google Earth  (Table 1). 
National surveys on seagrass distribution 
in Vietnam show where seagrass were 

referred to (Nguyen, 2008; Nguyen, 2013). 
Visual interpretation of Landsat images 
was aided with high-resolution images 
accessible from Google Earth Images. For 
visual interpretation of images where there 
are no high-resolution references, 
especially before 2000, the training data 
was made with the assumption that the 
seagrass that remain in more recent years 
used to exist in the same place. Training 
points were created for each class in each 
scene, spaced about 200m apart, and 
distributed in a grid-like manner to ensure 
randomness and minimize over-training. 
Pixels were chosen across the image to 
ensure good coverage of the possible 
variation among pixels’ reflectance. 
Several sets of training data were created 
to adapt to the changing seagrass 
distribution. If seagrass still presents in a 
training data set across different time 
period, the same training set was used to 
minimize bias.

 
Table 1: Table of training data used for classification, presented as number of pixels 

Training 
set 

Time 
period 

deepwater 
(class 0) 

seagrass 
(class 1) 

sand 
(class 2) 

land 
(class 3) 

turbid 
(class 4) 

deepsand 
(class 5) 

coral 
(class 6) 

A1 2010-
2019 48 24 53 116 35 0 0 

A2 2000-
2010 24 15 33 83 59 0 0 

A3 1985-
2000 24 64 33 24 28 0 0 

B1 2010-
2019 51 30 52 180 74 0 0 

B2 2000-
2010 34 28 53 97 148 0 0 

B3 1985-
2000 34 71 53 38 117 0 0 

C1 2010-
2019 58 11 21 99 47 0 0 

C2 2000-
2010 41 22 32 50 67 0 0 

C3 1985-
2000 41 22 35 31 67 0 0 
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D1 1990-
2019 40 5 27 43 54 0 0 

D2 1985-
1990 36 15 11 29 54 0 0 

E1 1990-
2019 132 83 61 80 145 0 0 

E2 1985-
1990 86 119 50 56 83 0 0 

F1 1990-
2019 162 87 52 172 114 29 42 

F2 1985-
1990 133 154 93 172 56 36 11 

G1 1990-
2019 151 203 82 91 55 27 0 

G2 1985-
1990 50 111 27 72 103 0 0 

Total  1145 1064 768 1433 1306 92 53 

 

Two field surveys were carried out in 
Ninh Hai district in Ninh Thuan Province 
(2018) and Phu Quoc islands, Kien Giang 
Province (2020). In each field survey, 
photos of the land cover were taken along 
transects that were 50m apart. On the 
intertidal flats, trained observers walked 
along transects during low tides until a 
safe depth. Photos were taken with a GPS-
enabled camera (GoPro Hero5) and 
iPhone 6. For surveying deeper areas, a 
local boat was rented to move along 
transects. At each point 50m apart, the 
GoPro camera was dropped directly below 
the boat, GPS location recorded on the 
boat, and depth measured by a depth 
sounder, HONDEX PS-7. Details about 
the land cover included: seagrass presence, 
seagrass species, seagrass density cover, 
and substrate type (sand, mud), were noted 
and digitized. This information was later 
used in creating the training data.  

An unmanned aerial vehicle (UAV) 
was also used to take photos of seagrass 
beds in Phu Quoc (Figure 1-v) from 150 m 

altitude with 4cm resolution on 2020-02-
05. Image acquisition was timed at low 
tide when the seagrass beds emerged from 
the water surface. This image was then 
compared with the manual interpretation 
of a satellite image to assess how accurate 
the visual interpretation is. Manual 
interpretation of a Landsat image, 
LANDSAT/LC08/C01/T1_SR/LC08_126
053_20200113 without reference to the 
UAV image was carried out to identify 
seagrass and non-seagrass classes. Then a 
confusion matrix between my 
interpretation and the UAV image was 
done (Table S2). The overall accuracy for 
my interpretation was 98.69%, with 
Producer’s accuracy for seagrass class 
being 99.21%, Consumer’s accuracy for 
seagrass being 99.21%, and kappa 
coefficient of 0.9537.  We omitted 0.79% 
of seagrass in this case, meaning there 
could be more seagrass present than my 
estimation. This validation of my training 
shows that my visual interpretation of 
Landsat image is adequate. However, this 
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validation is limited as UAV images could 
only be orthomosaicked on shallow 
seafloor. Therefore, the distinction of deep 

seagrass from its surroundings is not 
validated. 
 

 
Figure 2: Flowchart of seagrass mapping. 

 

3. Methods 
Figure 2 describes the overall flow 

chart. While the process to map seagrass 
using supervised classification is well-
established, it is limited to handle a nation-
wide mapping. Classifying several images 

independently at individual sites may be 
result in specific, but incompatible 
classification results. While classifying 
the whole region as one image may 
oversimplifies the diversity in the 
environment as well seagrass spectral 
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responses. Our approach aims to mitigate 
the problem of being overly specific or 
overly general by adopting a scene-wise 
classification. This approach allows each 
scene to be preprocessed with specific 
parameters while keeping it comparable 
among sites. Furthermore, the addition of 
the ensemble step to minimize fluctuation 
in estimation. 

Scene-wise analysis allows for the 
consistent analysis of seagrass along the 
coastline. In addition, our approach allows 
for the analysis of land cover change, 
revealing the effects of land reclamation 
on seagrass beds, which have not been 
shown in other studies. The detail of each 
step is explained below. 
 
3.1 Data preprocessing 

Cloud masking was performed to 
eliminate cloud and cloud shadow pixels 
using the CFMask algorithm, represented 
as the QA band in the Landsat Surface 
Reflectance products (Foga et al., 2017). 
However, the LaSRC user's guide notes 
that "CFMask may have issues over-
including bright targets such as building 
tops, beaches, snow/ice, sand dunes and/or 
salt lakes", which could potentially lead to 
errors in the masking of the water surface, 
such as wave crashes (USGS, 2020). This 
is unlikely to impact seagrass distribution, 
as seagrass tends not to be found in areas 
with crashing waves (Greve and Binzer, 
2004). 

In order to separate land from water, a 
land mask was created. This land mask 
was made by binarizing the image based 

on the mNDWI index (Xu, 2006). The 
mNDWI (modified Normalized 
Difference Water Index) was calculated as 
follows: 

mNDWI = (Green - SWIR) (Green + 
SWIR)  (1) 
Where green is the reflectance of the green 
band (Band 2 of Landsat 5 TM, Band 3 of 
Landsat 8 TM) and SWIR shortwave 
infrared reflectance (Band 5 of Landsat 5 
TM, Band 6 of Landsat 8 TM).  

To monitor for changes in the coastal 
area over time, a baseline mask was made. 
Taking 1985 as the baseline, which was 
the earliest year Landsat 5 Surface 
Reflectance product was available. As for 
the shorelines and aquaculture ponds, the 
mixed pixels would have lower mNDWI 
than that of pure land pixels, the threshold 
was chosen at 0.23 to include those areas 
as well. The same mask was then applied 
to the other images. 

Coastline change was observed in the 
coastline of Vietnam between 1990 and 
2019, and especially in areas near river 
mouths, where accretion and erosion may 
both occur (Thoai, Dang, and Kim Oanh, 
2019). Seagrass has been recorded to 
inhabit estuaries, though in our monitoring, 
detection of seagrass near river mouths 
was limited (Nguyen 2013). Another 
pattern of coastline change in Vietnam was 
due to land reclamation, as observed in 
this research, through classification. Using 
a static land mask for analysis is limited in 
portraying coastline changes but has 
benefits in showing the land-use-land-
cover changes of the coastline through 
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map-to-map comparison. If the land mask 
is not fixed, and is updated per image, it 
will be difficult to verify the occurrence of 
land reclamation over seagrass beds, and 
to calculate the area of seagrass affected 
by land reclamation. 

Sun glint tends to contaminate the 
reflectance where reflectance from the 
water surface is captured by the satellite 
sensor. Images contaminated with 
excessive sun glint were discarded. Minor 
glints were corrected using Hedley's glint 
correction method using the NIR 
reflectance of the water surface (Hedley, 
Harborne, and Mumby 2005).  Among 
sun glint correction methods, there are 
methods suitable for open ocean and 
shallow waters. Among sun glint 
correction methods for shallow waters, 
there are several methods available 
(Hochberg, Andréfouët, and Tyler 2003; 
Hedley, Harborne, and Mumby 2005; 
Lyzenga, Malinas, and Tanis 2006; Philpot 
2007; Goodman, Lee, and Ustin 2008; 
Kutser, Vahtmäe, and Praks 2009). Among 
which, Philpot and Goodman's methods 
are calibrated for AVIRIS data, and 
Kutser's method requires a hyperspectral 
input, so they are not used here. The 
Hochberg, Hedley and Lyzenga methods 
are suitable for the dataset. Hedley’s 
method is an improved version of 
Hochberg’s, and Hedley’s is 
mathematically similar with Lyzenga, 
while having a simpler equation, so it was 
chosen. 
R’i=Ri-bi(RNIR-MinNIR)  (2) 
 

Where R’i is the sun-glint corrected 
reflectance in band i, Ri is the reflectance 
in band i, bi is the regression slope of 
reflectance in band i against band NIR. 
MinNIR is the minimum value of NIR 
value in the sample set of pixels. The 
sample pixels were manually selected 
based on visual interpretation to create a 
polygon containing approximately 400 
pixels (or 600m x 600m area) of deep 
water, including glinted pixels. Linear 
regressions were done to calculate bi. 

To classify underwater objects, it is 
necessary to consider the effect of the 
water column. There are several methods 
for water column correction (Lyzenga, 
1981; Sagawa et al., 2010; Matsunaga, 
Hoyano, and Mizukami, 2000; Stumpf, 
Holderied, and Sinclair, 2003). For 
methods that do not require auxiliary data 
such as bathymetry, in situ data such as 
attenuation coefficients, Lyzenga's Depth 
Invariant Index is the most well-cognized. 
Matsunaga's Bottom Index is 
mathematically identical to Lyzenga's DII, 
and it is more straightforward to apply. 
Even though Sagawa’s water column 
correction method is effective in 
improving accuracy, the Bottom 
Reflectance Index method requires 
detailed bathymetry data, which is yet to 
be available in most coastal regions in 
Vietnam. Even without exact bathymetric 
data, Landsat images are effective for 
mapping seagrass in tropical coastal 
waters. Matsunaga’s Bottom Index, which 
is derived from Lyzenga's Depth Invariant 
Index, proposed a simpler representation: 
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BIij=ln(Li-Lsi)-kij*ln(Lj-Lsj) (3) 

Where kij is the extinction ratio of bands i 
to j. It is given by calculating the gradient 
from the regression analysis between 
signals of two bands i, j over an area of 
identical substrate with varying depth. 
Three Bottom Indices were calculated 
using 3 pairs of Blue-Green, Blue-Red, 
and Green-Red bands.  

To calculate the attenuation 
coefficients, for a site, one area with a 
homogeneously sandy substrate with 
varying depth was chosen by visual 
interpretation. Then a polygon was drawn 
to sample about 50 pixels along that 
transect. Assuming the water quality is 
horizontally homogeneous, the location of 
the transect should not significantly affect 
the calculated coefficients if it samples 
enough pixels to establish pair-wise linear 
correlations. Linear regression was done 
on the sampled pixel values to calculate 
the attenuation coefficients for 3 pairs of 
bands: Blue-Green, Blue-Red, and Green-
Red. Then, the attenuation coefficient was 
used to calculate the Bottom Indices, 
which are supposed to represent the 
bottom reflectance if the water column 
effect were corrected. 

 
3.2 Supervised Classification 

Supervised classification was used to 
monitor the areal changes of seagrass and 
other classes. Classes were chosen to have 
distinct spectral responses. A 
comprehensive class scheme was created 
for the entire country, containing 7 classes, 

described below:  
The class of interest is seagrass, with 

low reflectance in most bands, and higher 
reflectance in the green band. In previous, 
it has been shown that there were few 
differences detectable with the 
specifications of Landsat 5 and 8 for the 
classes of seagrass and seaweed, hence the 
class of seagrass might include seaweed. 
(Kakuta, Takeuchi, and Prathep 2016). 
Nevertheless, as confirmed with literature 
review and our field surveys, the areas of 
training for seagrass contain dominantly 
seagrass, with minimal inclusion of 
seaweed. 

Non-seagrass classes include: 
• Deep water, usually at the deep 

side of the coast, typically more 
than 5m deep in tropical coast, 
universally low reflectance, except 
for blue bands. 

• Sand, usually on the shallow side 
of the coast, may include sandy 
substrates mixed with dead corals, 
and mud; with higher reflectance 
in the red, green, and blue band, 
but low in NIR.  

• Land features are emerged features 
are pixels representing objects 
above the sea surface, notably 
reclaimed land, aquaculture ponds, 
boats, or other man-made 
structures, which usually have 
high NIR reflectance. 

• Turbid water denotes pixels where 
the water column's reflectance 
totally obscures the reflectance of 
the bottom cover, usually in 
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estuarine and lagoon systems.  
Though it is possible that seagrass 
may still exists under the turbid 
water column, it is inconclusive, 
hence needs to be verified through 
field surveys. 

• Deep sand denotes sandy substrate 
under a clear water column. 

• Coral denotes coral reefs. 
 
Figure 3 shows the spectral response 

signatures of different classes involved in 
seagrass mapping. Deep water pixels have 
overall low reflectance. The spectral 
responses of seagrass and turbid water are 
similar in the optical bands. This could be 
a source of confusion for further 
classification in seagrass mapping in 
tropical coastal waters. 

To verify the separability among the 

classes, the Jeffries-Matusita Distance 
(JM distance) was calculated (Table 2). 
The JM distance is a commonly used 
criterion in the field of pattern recognition 
and feature selection. The JM distance (J) 
between two classes wi and wj that are 
members of a set of C classes (i, j = 1, 2, …, 
C, i ≠ j) has been defined as follows (Davis 
et al., 1978): 

𝐽!" = 2(1 − 𝑒#$!") (4) 

where dij is the Bhattacharyya 
distance between the classes wi and wj, 
defined as (Davis et al., 1978): 

 

𝑑!" = *∫,𝑃(
%
&!
)𝑃( %

&"
)𝑑𝑥/ (5) 

where P(x/wi) and P(x/wj) are the 
conditional probability density functions 
of the random variable x, given the data 
classes wi and wj, respectively.

 
Table 2: Jeffries-Matusita Distance of training points sampled on the test image 

 
 

 

 Deep water Seagrass Sand Land Turbid Deep sand Coral 

Deep water -       

Seagrass 1.411 -      

Sand 1.414 1.358 -     

Land 1.414 1.387 1.359 -    

Turbid 1.400 1.359 1.388 1.412 -   

Deep sand 1.410 1.407 1.406 1.414 1.375 -  

Coral 1.352 1.413 1.414 1.414 1.410 1.412 - 
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Figure 3: Spectral responses of points in seven classes sampled on 
LANDSAT/LC08/C01/T1_SR/LC08_123052_20160909 image. 

 
JM distance shows the separability 

between classes, with values ranging from 
0 to 2, where 0 means the two distributions 
are identical, and 2 means they are totally 
different. All of the 7 classes in this test 
image had a JM distance of between 1.352 
to 1.414, showing that they are sufficiently 
separable. Seagrass is less separable from 
Sand and Turbid class than from other 
classes, which might show as errors in the 

classification step. 
In this study, a Random Forest 

classifier with 100 trees was utilized for 
the classification task. The Random Forest 
algorithm is an ensemble method that 
involves the construction of multiple 
decision trees, with the final classification 
result determined by the mode of the 
classifications provided by each 
individual tree (Breiman, 2001; Ho, 1995). 
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This method was chosen for its high 
accuracy in land cover classification, as 
well as its relatively low computational 
demands compared to other machine 
learning algorithms such as Support 
Vector Machine, or deep learning 
algorithms, while having adequate 
classification accuracy (Komatsu et al., 
2020). The parameter of 100 trees was 
selected as a balance between the desire 
for high accuracy and the constraint of 
limited computational resources, 
following a process of trial and error. 
Inputs for the classifiers include the blue, 
green, red, near infrared, shortwave 
infrared 1, shortwave infrared 2, Bottom 
Index Blue-Green, Bottom Index Blue-
Red, Bottom Index Green – Red. To adjust 
for variations among images, especially in 
the water column, the classifier was 
trained for every image. Using the training 
data set as described in Table 1, the image 
would be sampled to train a random forest 
classifier for the specific image, which 
was in turn used to classify the image.  

Ensembling was done to minimize 
salt and pepper error, and enhance 
consistency among regions. Classification 
of seagrass in tropical coastal waters is 
challenging because the classifier has 
difficulty detecting seagrass in turbid 
waters. In tropical coastal waters, high 
turbidity and constantly changing water 
quality mean the reflectance of seagrass 
pixels could be obscured by the water 
column. As a result, a seagrass pixel may 
be classified as seagrass in one image, and 
as turbid water in another image in the 

same location. To get the most 
representative land cover class, the 
statistical mode of classification results in 
each 5 years period was used as the 
representative class for that pixel (Figure 
S1). We made sure that there are at least 3 
images per five-year stack for the 
statistical analysis. The area of seagrass 
was calculated based on the ensembled 
results. The number of pixels was 
multiplied by one pixel’s area to give the 
total area of a class in the image.  

For each image, we split the training 
data into 70% for training and 30% for 
validation. We trained a classifier on the 
70% training data and then compared the 
resulting classification with the validation 
data. We repeated this process 100 times 
and used the mean accuracy across the 100 
repetitions to evaluate the accuracy of the 
classifier for each image. We then took the 
mean of all the individual image 
accuracies to arrive at "mean overall 
accuracy", "mean producer accuracy for 
seagrass" and "mean user accuracy for 
seagrass" for the entire time series of 
images. The study assumed that the 
accuracy of the time series product is 
equivalent to the accuracy of the thematic 
mapping (Lyons, Roelfsema, and Phinn, 
2013). 

Change detection was done to identify 
what may have caused the changes in 
seagrass distribution. Classified maps 
before and after were compared to create a 
transition map. The pixel value on the 
transition map shows the class of that pixel 
in the map before and after, summarized 
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Table S5. Changes were summarized as: 
seagrass remained, seagrass lost to land 
features, seagrass lost to turbid water, 
seagrass lost to other classes, and seagrass 
gained. Other changes were not analyzed. 
Seagrass lost to land features would 
suggest that seagrass was lost due to land 
reclamation, while seagrass lost to turbid 
water may suggest a worsened water 
quality 
 
4. Results and Discussions 
4.1 Classification results 

Table 3 shows the confusion matrix 
for the test image. The results of the 
classification analysis yielded an overall 
accuracy of 84.62% and a kappa 
coefficient of 0.81, indicating a 
satisfactory level of agreement between 
the classification results and the reference 
data. The producer's accuracy for seagrass 

was found to be 90.00%, indicating that 
10% of seagrass was incorrectly classified 
as sand. Conversely, the consumer's 
accuracy was 75%, indicating that sand, 
land features, and turbid water were 
misclassified as seagrass. This may be 
attributed to the similarities in appearance 
between seagrass and these other classes, 
as illustrated in Table 2. 

Table 4 shows the number of images 
used and the accuracy assessment of the 
classification results for images in the 
paper. The number of available images 
differs due to the frequency of cloud 
contamination. The mean overall accuracy 
ranges from 75.8% to 90.4%; the mean 
producer accuracy for the seagrass class 
ranges from 40.8% to 77.9%; the mean 
user accuracy for the seagrass class ranges 
from 37.1% to 73.4%. 
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Figure 4. Changes in seagrass extent in Vietnam’s major seagrass beds at (i) Tam Giang 
Lagoon, (ii) Van Phong Bay, (iii) Thuy Trieu Lagoon and Cam Ranh Bay, (iv) Thai An 

and My Hoa, and (v) Phu Quoc island. Seagrass extent analyzed in 1985-1990 and 
2015-2019 periods were shown to observe their changes. 

 
  

Table 3. Confusion matrix for the test image 
(LANDSAT/LC08/C01/T1_SR/LC08_123052_20160909) 

  Classified   

  Deep 
water Seagrass Shallow 

sand 
Land 

features 
Turbid 
water 

Deep 
sand Coral Total Producer’s 

Accuracy 

 R
ef

er
en

ce
 

Deep water 39 0 0 0 0 0 0 39 100.00% 
Seagrass 0 18 2 0 0 0 0 20 90.00% 

Shallow sand 0 2 9 3 2 2 0 18 50.00% 
Land features 0 2 2 27 0 0 0 31 87.10% 
Turbid water 0 2 0 0 27 3 1 33 81.82% 

Deep sand 0 0 0 0 1 7 1 9 77.78% 
Coral 0 0 0 0 1 0 5 6 83.33% 

 Total 39 24 13 30 31 12 7 156  

 Consumer's 
accuracy 100.0% 75.0% 69.2% 90.0% 87.1% 58.3% 71.4%   

 
Table 4. Accuracy assessment of classification 

Landsat 
scene 

Number of 
images 

classified 

Mean overall 
accuracy 

Mean producer's 
accuracy for 

seagrass 

Mean consumer's 
accuracy for seagrass 

A  27 82.8% 58.8% 69.3% 
B 69 84.3% 40.8% 37.1% 
C 66 75.8% 49.4% 58.7% 
D 168 90.4% 43.1% 47.7% 
E 65 76.4% 64.9% 72.4% 
F 55 77.8% 67.6% 63.4% 
G 46 83.5% 77.9% 73.4% 

This research presents a 
comprehensive analysis of the temporal 
and spatial patterns of seagrass 
distribution changes in Vietnam over a 30-
year period (1985-2019) using a cloud-
based monitoring framework. Figure 4 
illustrates the major seagrass sites that 
were monitored, while Table S3 provides 
a detailed breakdown of the area of 
seagrass sites during two distinct time 
periods (1985-1990 and 2015-2019) and 
their comparison. The total area of 

seagrass beds in Vietnam during the 1985-
1990 period was 36 ha, while during the 
2015-2019 period, it was 17,081 ha. The 
study indicates that seagrass beds larger 
than 50 ha in lagoons, bays, and tidal flats 
were effectively monitored. However, it 
must be noted that not all seagrass sites in 
Vietnam could be mapped, particularly 
those located in northern Vietnam. 

This study presents a national-scale 
framework for monitoring seagrass beds 
in Vietnam over a 30-year period utilizing 
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remote sensing imagery. The proposed 
method allows for consistent monitoring 
of most seagrass beds in Vietnam, even 
those smaller than 100 ha. However, it 
should be noted that the framework may 
have missed 1654-4018 ha of seagrass. 
Through visual inspection of Landsat 
images for the entire coastline of Vietnam, 
seagrass beds were not identified in 
certain areas listed in Table S4. This may 
be due to a combination of factors such as 
small seagrass area extent, low seagrass 
density, difficulty in observing specific 
seagrass species, and poor water quality. It 
is important to note that in this analysis, all 
seagrass pixels in one image were 
assumed to be of the same class, which 
may be an oversimplification. The spectral 
response of seagrass can vary depending 
on several physical factors, such as the 
seagrass species present, the water column, 
and the substrate. These factors can 
influence the seagrass spectral response, 
making it difficult to accurately classify all 
seagrass pixels as the same class. For 
example, dense seagrass patches of 
Enhalus acoroides, Thalassia hemprichii, 
Cymodocea rotundata, and Cymodocea 
serrulate could be recognized, but smaller 
species such as Halophila ovalis, 
Halodule uninervis were more difficult to 
distinguish. 

The classification accuracy obtained 
in this study is consistent with previous 
research that utilizes pixel-based 
classifications, as reported in the literature 
(Lyons, Phinn, and Roelfsema, 2012; 
Chen et al., 2016; Hossain et al., 2019). 

However, the accuracy varied across 
different scenes (path, row) of Landsat 
images, as shown in Table 4. This 
variation could be attributed to variations 
in the dominant habitat type and seagrass 
species in the respective scenes.  

The results of the classification are 
presented in Figure S 1, where seagrass is 
depicted in green and non-seagrass classes 
are illustrated in black. The ensemble 
result is also included. It is observed that 
there are variations in the distribution of 
seagrass in individual images, which may 
be attributed to factors such as changes in 
water quality, image quality, or 
classification errors. As these images were 
acquired during the same season, it is 
unlikely that there would be significant 
changes in the distribution of seagrass 
beds. To mitigate this fluctuation, the 
mode of classification was utilized to 
present a representative distribution of 
seagrass over a five-year period. The 
current method also emphasizes the 
detection of permanent changes in land 
cover, such as land reclamation on 
seagrass beds. 

Water column correction was applied 
scene-wise, which may have some caveats. 
These assumptions were made while 
applying the bottom index technique for 
water column correction. Firstly, it was 
assumed that the water quality is 
horizontally identical in the whole Landsat 
image. This may not be true in coastal 
areas where there are significant sources 
of mixing or loading such as river mouths 
or areas with heavy aquaculture activities, 
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or in places with highly varied coastal 
environments such as in Figure 1-iv, with 
a lagoon, bay, and exposed waters in the 
same image. Secondly, it was assumed 
that the bottom reflectance was not 
completely absorbed by the water column, 
or objects on the water surface, which may 
not be true in turbid areas. Thirdly, the 
water column is between two and ten 
meters deep. In very shallow water (less 
than two meters deep), Lyzenga’s equation 
does not correct the effect of internal 
reflections, especially where light is 
continuously reflected between the water 
surface and a bright bottom surface, such 
as sand. For waters deeper than 10m, red 
and green light has mostly attenuated, 
leaving no reflectance to refer to for 
calculation. Because of those assumptions, 
the bottom indices are not totally reliable 
for the accurate classification of benthic 
types in the coastal waters of Vietnam, 
which is typically turbid. 

 
4.2 Spatial and temporal patterns of 
seagrass in Vietnam in 1985-2019 

Table-S3 shows the area of seagrass 
beds in Vietnam and their changes in the 
30 years period. Most of the seagrass beds 
have declined, with a few exceptions of 
increased or maintained relatively stable. 
The rate of decline was further explored in 
Figure 5, which shows that across three 
types of habitats, seagrass beds all over the 
coastline of Vietnam have been decreasing. 
Relative changes were presented in 
different habitats of the seagrass beds, as 
each of them has distinctive characteristics.  

The most severely damaged seagrass 
beds are seagrass beds in bays and lagoons, 
where 60% to 85% of seagrass beds were 
lost between 1985 and 2019. Seagrass 
beds on tidal flats have also decreased, but 
to a lesser extent, ranging from a 67% loss 
in Vinh Hao to a 15% gain in Bai Bon. 
Overall, 53% of seagrass areas monitored 
in this analysis were lost, down from 
36,185 ha in the 1985-1990 period to 
17081 ha in the 2015-2019 period. 8 sites 
had a more than 70% loss of seagrass. In 
the temporal pattern aspect, most seagrass 
beds decrease before 2000. From 2005-
2019, the decrease continued, with various 
patterns depending on sites. 

There are many factors contributing 
to the loss of seagrass beds, from 
anthropogenic factors such as destructive 
fishing, land reclamation for construction, 
building aquaculture ponds, water 
pollution, and natural factors such as 
typhoons but this analysis focuses on the 
loss of seagrass beds due to land 
reclamation because this irreversible 
change is the most serious(Nguyen, 2004; 
Nguyen, 2013). Figure 6 shows that in 
bays and lagoons systems, land 
reclamation happens extensively in 
almost all seagrass beds, as well as a few 
tidal flats. 

Figure 7 highlights the significant loss 
of seagrass due to land reclamation in Cam 
Ranh Bay. The shallow areas inside the 
bay have been extensively developed for 
aquaculture ponds and infrastructures 
such as piers and ports. The other changes, 
such as seagrass pixels turning into turbid 
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water pixels, are also worth considering. 
However, interpreting those changes 
requires further data, such as measuring 
water quality, to be conclusive. 

Seagrass losses in Vietnam are 
attributed to destructive fishing methods, 
agricultural reclamation, aquaculture, 
tourism, marine transportation and 
construction of ports, typhoons, and 
degrading water quality (Nguyen, 2008). 
Similarly, in national seagrass report, a 
compiled study of 37 seagrass beds 
comparing their areas in 1997-2000 and 
2009-2010 showed 20 out of 37 seagrass 
beds were damaged by reclamation for 
construction or aquaculture, 3 due to 
flood-caused sediment burials, 2 due to 

destructive fishing, 12 with unclear causes 
(Nguyen, 2013). 

Our study quantified the observation 
that reclamation is a major cause of 
seagrass loss in Vietnam and gave insights 
into the spatial and temporal patterns of 
reclamation-driven loss of most seagrass 
beds along the Vietnamese coastline. This 
observation agrees with (Chen et al. 2016), 
(Vo et al. 2020), and our study further 
quantified the area of loss due to land 
reclamation, as well as extending the area 
of monitoring to the whole Vietnam 
coastline. This result provided the 
foundation for further discussion of 
seagrass loss and its causes in Vietnam. 

 

 

 
Figure 5: Relative seagrass area changes of seagrass beds in Vietnam’s coastal zone 
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from 1985 to 2019. 
 

 
Figure 6: Area of seagrass beds being replaced by land features such as aquaculture 

ponds or piers in respective ecosystems: (a) Major bays, (b) Major lagoons, (c) Major 
tidal flats between each 5 years periods. 

 
The temporal trend of seagrass loss to 

land reclamation seems to suggest that 
most losses happened in the 1990s up until 
2005 (Figure 6). Such a trend is explained 
partially by land use policies. National 
Decree 773-TTg approved on December 
21, 1994, strongly encouraged people to 
clear coastal wetlands and reclaim coastal 
waterfronts for shrimp farming (Le, 2008). 
These movements could have had a 
similar impact on coastal seagrass beds, 
which received even less attention from 
conservation back then. Conversion of 
seagrass beds to land features has slowed 
down from 2005 onwards, perhaps due to 
improvements in coastal ecosystem 
conservation policies. However, it could 
also be explained that the shallow coastal 
land that is easy to be reclaimed has 
already been reclaimed, leaving only the 
deeper, more expensive to convert areas. 

In our study, degraded water quality, 

shown as seagrass lost to turbid water 
(Figure 7) is also suggested to be a major 
contributor to seagrass loss, which is also 
suggested by other studies (Quang et al., 
2017). Sea level rise leading to coastline 
receding inland is a possible phenomenon. 
The methodology of this paper, 
unfortunately, cannot be quantitatively 
conclusive about coastal erosion. As we 
fixed a baseline coastline, and analyze 
how the coastal seagrass has changed, 
coastal erosion resulting in the coastline 
receding will be unknown. The status of 
such eroded land could be formations of 
sand banks or tidal flats, or even 
potentially seagrass (Veettil et al., 2021; 
Thuc et al., 2023; T. T. H. Pham and 
Furukawa, 2007). As a result, it may result 
in a landward expansion of seagrass 
distribution. As we could not identify such 
changes in our analysis, we assume an 
underestimation in this aspect. Besides, 
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sea level rise may result in a deeper water 
column over established seagrass 
meadows, leading to the loss of seagrass 
in the deep edge. The detection of seagrass 
loss in the deep edge, however, is also 

limited in this paper, as it is inconclusive 
whether seagrass was truly lost in the 
deeper area or is not detected through the 
satellite image.

 

 

 
Figure 7. Change detection at Cam Ranh Bay (Figure 1-iv). True color images of 1990-
07-16 (top left) and 1996-06-30 (top right) show the replacement of seagrass beds by 

land reclamation for aquaculture ponds and Map-to-map change detection between the 
1990-1995 period and 1995-2000 period. 
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5. Conclusion 
We were able to monitor the changes 

in most seagrass beds in Vietnam for more 
than 30 years, showing explicitly the 
temporal and spatial patterns of seagrass 
area changes. We could map 36,185 ha of 
seagrass in 1985-1990 period and 17,081 
ha in 2015-2019 period, showing a 
52.79% of seagrass loss. Most seagrass 
beds were lost between the late 1990s and 
early 2000s and continued to decrease. 
The continued decrease signified the lack 
of effective conservation and recovery for 
seagrass ecosystems. Spatial patterns 
showed that most seagrass losses were 
directly displaced by land reclamation for 
aquaculture or construction of 
infrastructure. These findings 
demonstrated that remote sensing is a 
cost-effective method to monitor coastal 
seagrass ecosystems at this spatial and 
temporal scale. The results emphasized 
the necessity and urgency to update the 
seagrass distribution data, as many 
seagrass beds have decreased in size or 
disappeared totally. It is potential to apply 
this approach to monitor other regions to 
enhance our understanding of changes to 
seagrass ecosystems and improve our 
conservation. 
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Supplement Materials 
 

 
Figure S1: Composition of the mode of classified results in Bai Bon and Bai Vong 

intertidal flats, Phu Quoc islands. 
 
 

Table S1: Table of regions in Vietnam, their seagrass species and phenology (Nguyen, 
2013). 

Region Species Phenology 

Northeast (Quang Ninh, 

Hai Phong) 

Zostera japonica, Ruppia 

maritima, Halodule uninervis, 

Halophila beccarii, Halophila 

ovalis, Halophila decipiens 

Density, biomass, and leaf area of 

Halophila ovalis and Zostera 

japonica decrease in rainy season 

(September) and increase in the dry 

season (December - April) 

Red river delta - North 

Central (from Hai 

Phong to Hue) 

Zostera japonica, Ruppia 

maritima, Syringodium 

isoetifolium 

Grow poorly or die in the rainy 

season (September-Feb), due to high 

turbidity, low salinity, or uprooted by 

typhoons. Grow well in dry season 

(March-August) 

South Central (Da Nang, 

Quang Nam, Quang 

Ngai, Binh Dinh, Phu 

Yen, Khanh Hoa, Ninh 

Thuan, Binh Thuan) 

Zostera japonica, Halodule 

uninervis, Thalassia 

hemprichii, Halophila ovalis, 

Cymodocea rotundata, 

Halophila decipiens, Halodule 

pinifolia 

Grow poorly or die in the rainy 

season (September-February), due to 

high turbidity, low salinity, or 

uprooted by typhoons. Grow well in 

the dry season (March-August) as 

salinity increases. 
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Southeast (Vung Tau)  

Southwest (Kien Giang) 

Zostera japonica, Halodule 

uninervis, Thalassia 

hemprichii, Halophila ovalis, 

Cymodocea rotundata, 

Halophila decipiens, Halodule 

pinifolia 

Grow poorly or die in the rainy 

season in rainy season (September) 

high in dry season (March) 

 
 
 
 

Table S2: Accuracy for Landsat visual interpretation against UAV data  
My interpretation Total (pixels) PA 

Seagrass Non-seagrass 

Reference 

from UAV 

Seagrass 126 1 127 99.21% 

Non-seagrass 1 25 26 96.15% 

Total (pixels) 127 26 153  
UA 99.14% 99.21%   

 
Table S3: Classification result for each seagrass site in 1985-1990 and 2015-2019 period 

and the percentage lost
 

Location Landsat Scene 
(Alphabet name -
Path, Row) 

Area in 
1985-1990 
period (ha) 

Area in 
2015-2019 
period (ha) 

Percentage 
lost 

Lang Co Lagoon A - 125, 048 240 145 39.54% 
Tam Giang - Cau 
Hai Lagoon 

B - 125, 049 8534 2116 75.21% 

Han River 
Estuary 

C - 124, 049 310 91 70.70% 

Cua Dai Estuary C - 124, 049 306 44 85.50% 
Nui Thanh 
Lagoon 

C - 124, 049 1570 220 86.02% 

Thi Nai Lagoon D - 123, 050 713 362 49.24% 
Cu Mong Lagoon E - 123, 051 806 332 58.85% 
Xuan Dai Bay E - 123, 051 894 249 72.14% 
O Loan Lagoon E - 123, 051 376 238 36.83% 
Van Phong Bay  E - 123, 051 3570 716 79.94% 
Nha Trang Bay F - 123, 052 848 254 70.09% 
Thuy Trieu F - 123, 052 682 441 35.31% 
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Lagoon 
Cam Ranh Bay  F - 123, 052 3387 1326 60.86% 
Nha Phu Bay F - 123, 052 422 66 84.45% 
Thai An Tidal flat  F - 123, 052 133 89 33.07% 
My Hoa Tidal 
Flat 

F - 123, 052 421 205 51.22% 

Nai Lagoon F - 123, 052 1121 310 72.32% 
Vinh Hao Tidal 
Flat 

F - 123, 052 705 239 66.13% 

Rach Vem 
Estuary 

G - 126, 053 680 379 44.36% 

Bai Bon Tidal Flat G - 126, 053 3787 4338 -14.53% 
(increased) 

Bai Vong Tidal 
Flat 

G - 126, 053 3672 2870 21.83% 

Bai Dam Tidal 
Flat  

G - 126, 053 1114 551 50.53% 

Mui Ong Doi Bay  G - 126, 053 220 176 20.17% 
Mui Ham Rong 
Bay  

G - 126, 053 389 398 -2.40% 
(increased) 

Bai Trau Nam 
Tidal flat 

G - 126, 053 1284 927 27.76% 

Total  36185 17081 52.79% 
 

Table S4. Table of seagrass sites that could not be identified in our analysis, with area 
according to literature survey (Cao et al., 2012; Nguyen, 2013) 

 
Site name Area range (hectare) 

De Gi Lagoon 50 - 50 
Han River 30 - 300 

Cua Dai Estuary 160 - 375 
Thu Bon estuary 50 - 50 

Dinh Vu 30 - 120 
Lach Huyen 0 - 60 
Trang Cat 2 - 60 

Cat Hai lagoon 60 - 100 
Nha Mac lagoon 240 - 500 

Gia Luan 0 - 100 
Ha Long Bay 30 - 30 

Hà Cối 5 - 150 
Quan Lan tidal flat 2 - 100 

Ha Lagoon 3 - 80 
Ngan Sanddune  0 - 30 

Kim Trung 60 - 120 
Dong Long 150 - 150 
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Thanh Long 80 - 80 
Xuan Hoi 50 - 50 

Nhat Le - Dong Hoi 80 - 200 
Gianh River 250 - 500 

Lo River 6 - 8 
Van Gia 0 - 10 

Cua Be River 1 - 10 
Hon Bip 0 - 10 

Vung Bau 0 - 200 
Ha Rong lagoon 100 - 200 
Vu Yen lagoon 15 - 20 

Thuy Nguyen lagoon 10 - 15 
Hai Hau 190 - 240 

Buon Lagoon 0 - 100 
Total 1654 - 4018 

 


