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Abstract 

The sustainability of the natural environment is vital to Mongolia due to pastoralism. It 
is easy to observe the phenology of vegetation growth represented by NDVI but 
challenging to tell vegetation changes due to human interventions from rainfall 
fluctuations. This can be solved through NDVI's response to precipitation changes. We 
calculated the temporal Pearson Correlation Value between NDVI and Precipitation 
data in Mongolia from 2001 to 2020, emphasizing grassland changes with MODIS 
LULC. In this period, the mean and median values of NDVI-Precipitation Correlation 
Values are 0.327 and 0.331, with a standard deviation of 0.204. Grassland has grown 
4.69%, and about 51% of grassland is deemed abnormal in vegetation growth by the 
NDVI-Precipitation correlation. There are substantial portions of grassland in 
Mongolia under heavy stress, although the overall NDVI of grassland is increasing. 
Model verification shows NDVI-Precipitation Correlation Value = 0.330-0.008 × 
Population Density, which links low correlation value to higher population density. 
 
Keywords: NDVI, GSMaP, Pearson Correlation, Time series data, Arid lands, 
Biomass 
  
1. Introduction 
1.1 Background 

Pastures make up almost 95 percent 
of Mongolian agricultural land, among 
which about 70 percent have degraded 
("Mongolia at a Glance," FAO). 
Understanding the scale and distribution 
of abnormality in vegetation growth is 
vital in protecting the local environment. 
Due to climate change, natural hazards, 

and overgrazing, there have been reports 
of increasing grassland degradation, 
which puts severe risks to the livelihood 
of many people in Mongolia (Liu et al., 
2013; Densambuu et al., 2018). And on 
the background of climate change, the 
general climate trends in Mongolia could 
be shifting into new patterns (Angerer et 
al., 2008). Entering the 21st century, 
almost a decade after the downfall of the 
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USSR, Mongolia has been transformed 
into a market economy. The nomadic 
groups conducting animal husbandry rely 
more heavily on raising 
cashmere-producing goats, further 
contributing to the overgrazing problem 
(Maekawa 2013). According to 
Mongolia’s National Statistical Office, 
the number of livestock has increased 2.6 
times from 2001 to 2020 (“Livestock,” 
NSO of Mongolia). The accompanied 
water-soil erosion problems like 
sandstorms are not only a regional issue 
but also an international concern 
(Natsagdorj et al., 2003; Shao et al., 
2006; Zhang et al., 2008). Since the 
social-economic reform in the 1990s, 
Mongolian society has been relatively 
stable for 20 years, giving us a suitable 
time window to observe the changes in 
the natural environment. 

 
As a vast country of around 1.6 

million Square Kilometers, Mongolia 
only harbors a population of 3.35 million 
people. And only 30% of the total 
population lives in rural areas conducting 
animal husbandry (“POPULATION OF 
MONGOLIA,” NSO of Mongolia). It is 
challenging to run a national-scale 
on-site investigation with such a low 
population density where observation 
conducted on satellite platforms in 
Remote Sensing could be of great 
strength and assistance. Researchers 
working with Remote Sensing datasets 
pointed out that vegetation and climatic 
factors work directly and indirectly, and 

precipitation is one of the critical factors 
we need to consider (Dale et al., 2000). 
To represent vegetation growth in the 
Remote Sensing dataset, we use the 
Normalized Difference Vegetation Index 
(NDVI) to monitor vegetation growth 
status and phenology patterns (Carlson 
and Ripley, 1997; Zhao et al., 2011; 
Pettorelli et al., 2005). Some researchers 
investigated the long-term NDVI 
dynamics and responses to climatic 
change in the Mongolian plateau and 
found out the most common growth 
period for vegetation is from April to 
October (Bao et al., 2014). And in 
dealing with yearly records, other 
researchers claim that the annual 
maximum NDVI value can represent that 
year's growth. At the same time, 
precipitation during the growing season 
can be utilized as the response amount of 
rainfall (Ding et al., 2007). Mongolia and 
Inner Mongolia divide the Mongolian 
Plateau. For the Southern part, people 
concluded that general restoration is 
observable even though human activity 
is still the first reason for grassland 
degradation (Zhang et al., 2020). To 
preserve the future sustainability of the 
local environment, we need to 
investigate and observe the human 
factor’s impact on vegetation growth on 
a national level. And a retrospective 
checkup of existing records helps us 
better prepare for the future (Mirza 2003; 
Stott 2016). 
 

Usually, with the increase in 
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precipitation, vegetation growth would 
also increase. However, in the case of 
Mongolia, the amount of vegetation 
growth we can observe could be what is 
left of grazing activities that might not be 
in good correlation with precipitation, 
and the acquired spatial-temporal change 
patterns of NDVI, therefore, contain bias 
caused by third-party influences. Should 
we only focus on the decrease in 
vegetation growth, we would introduce 
the bias by ignoring patches that have a 
growing amount of vegetation coverage 
but suffer more from grazing. 
Researchers also mentioned that in some 
of their research sites, high pasture load 
caused a digression of vegetation 
(Tulokhonov et al., 2014). And because 
of this, some researchers criticized the 
applicability of widely used correlation 
and regression analysis, stressing their 
inflexibility as linear statistical models 
could not accurately describe the 
relationships between the NDVI and 
Precipitation (Meng et al., 2020). 
However, the authors believe this "poor 
correlation" is a good indicator of the 
levels of impact of human activities. In 
primarily arid and semi-arid Mongolia 
(Beck et al., 2018), the correlation 
coefficient would be a high positive 
number between NDVI and precipitation 
under ideal conditions. So, places with 
low or negative correlations could be 
under heavy grazing stress or other 

anthropogenic influences. Thus, our 
calculation can count in all kinds of 
negative impacts, even in places with an 
increasing trend of vegetation coverage. 
 
1.2 Novelty and Objectives 

This work distinguishes itself in its 
broad scale, both temporally and 
spatially. It spans over two decades of 
data till the year 2020. It covers the 
whole of Mongolia, making the research 
more representative than research that 
uses data only from a brief time and 
partial regions of Mongolia (Sekiyama et 
al., 2015; Jargalsaikhan, 2013; Nanzad et 
al., 2019; Nyamsuren et al., 2019). Our 
unique interpretation and implementation 
of correlation analysis provide a simple 
yet powerful way of understanding the 
environmental time-series data in arid 
and semi-arid climates and producing a 
geospatial distribution of biomass 
fluctuation by climatic factors and 
human intervention. 

 
This paper aims to observe the 

characteristics of the correlation between 
vegetation growth represented by NDVI 
and precipitation change in Mongolia 
annually between 2001 and 2020 and to 
use the correlation analysis result of the 
NDVI-Precipitation pair to evaluate 
grassland fluctuations in Mongolia in the 
first two decades of the 21st Century. 

2. Material & Method 
The general workflow of this 

paper (figure 2.1) is that NDVI and 
Precipitation Data produced the temporal 
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Pearson correlation results as the 
vegetation growth abnormality index. 
After data exploration and discussion of 
the outcome, MODIS LULC data was 
introduced to make grassland change 

rates, biomass density, impacted area 
changes, average precipitation, and 
rainfall utilities from 2001 to 2020 in 
Mongolia. We finished our work with a 
verification discussion. 

 

 
Figure 2.1 Flowchart for methodology 

 
The first two subsections tell the 

logic and narrative behind the core 
model and the authors' arrangements in 
processing time-series data. With core 
ideas introduced, the third subsection 
gives a concise summary of data used in 
this research and workflow implemented 
in chronological order. All data used in 
this study are publicly accessible. 
 
2.1 How Correlation between NDVI 

and Precipitation can be an 
indicator of Abnormality in 
Vegetation Growth 

2.1.1 The intuition 
In an ideal arid environment 

where the water source for vegetation is 
precipitation, the level of vegetation 
growth (NDVI) achievable is 
fundamentally decided by the amount of 
rainfall in the growing season (Bao et al., 

2014; Dale et al., 2000; Ding et al., 2007; 
Jargalsaikhan, 2013; Sekiyama et al., 
2015; Wang et al., 2003). But if we 
introduce a third-party influence like 
grazing or harvesting, vegetation growth 
would display a reduced or even reversed 
response from precipitation. Mongolia 
mainly consists of grassland and desert 
under arid and semi-arid climates, with 
pastoralism as the primary agricultural 
practice. Should we collect years of 
rainfall and vegetation growth records 
and calculate their trends, places that 
show a decrease in vegetation growth 
where precipitation is increasing can be 
deemed regions impacted by "third-party 
influences." That is, vegetation partially 
consumed by livestock. This 
easy-to-understand but naïve intuition 
has two fatal flaws that we must address. 
First, calculating trends requires a latent 
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assumption of monotonic change in the 
data. The NDVI and rainfall data are 
seasonal, and the year-by-year difference 
can fluctuate. The author conducted the 
Mann-Kendall test (Mann 1945; Kendall 
1970) on the yearly data of NDVI and 
precipitation, only received a 25th 
percentile P Value of 0.097994 in rainfall 
and a median P Value of 0.144292 in 
NDVI, revoking the meaning of the trend 
calculation. Second, as stated in the 
previous paragraph, NDVI’s reduced 
response from precipitation change is 
also a sign of third-party influence, 
which the intuition could not reflect. If 
we add additional rules as exceptions, 
the classification process to tell which 
parcel of land has vegetation growth loss 
would soon be too complex to be useful. 

 
The writers’ solution to this 

problem is correlation analysis. Given 
the direct causal relationship between 
NDVI and rainfall, any place free from 
third-party influences would show a 
good correlation value between these 
two data. When any disruption interrupts 
vegetation growth, resulting in reduced 
or even reversed response from 
precipitation, they all appeared as low or 
negative values in the correlation 
analysis. Thus, a complicated guessing 
problem is now a binary decision to tell 
if a place is left alone in its natural 
condition or heavily impacted by 
third-party influences, in our case, 
anthropogenic activities. We later called 
this correlation analysis as vegetation 

growth abnormality or, simply, 
abnormality. 
 
2.1.2 Model verification 

The verification of our results 
and model is in three progressive steps: 
Step 1, with natural parks as a control 
group (free from agricultural and 
industrial production), we are to verify 
that high and low correlation values 
relate to good NDVI response to 
precipitation and reduced/reversed 
response in the latter case.  
 
Step 2, using visual interpretation to find 
necessary but insufficient evidence of 
so-called “third-party influences” that 
caused a low correlation value. Our 
model is built on the assumption that 
industrial or agricultural human 
production disrupts vegetation's natural 
growth, so photographs of those sites can 
be helpful to solidify this paper. 
 
Step 3, the geospatial dataset to 
cross-validate on the national scale. By 
the argument in the second step, if we 
find proof that higher population density 
links to a lower correlation value 
between NDVI and precipitation, we can 
prove our model stands firmly. 
 

Because the hypothesis states that 
NDVI responds well to precipitation, 
water bodies and forest regions were 
excluded from the discussion in this 
paper because the former does not 
contain meaningful vegetation 
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information. The latter would have the 
issue of NDVI saturation (Liu et al., 
2017), and livestock like horses and 
cows do not usually climb tall trees to eat 
the leaves. 

 
2.2 Dealing with time-series data 
2.2.1 Processing NDVI and 

precipitation data 
Before conducting correlation 

analysis, we need to process the two 
participating data first. To represent 
vegetation growth each year, we select 
the maximum monthly composite as the 
value indicating the top growth the grass 
can reach within the timeframe for the 
given place. The reasoning behind this 
decision is that we must mask the 
seasonal fluctuation and focus on 
year-by-year change. Most vegetation 
growth and precipitation happen in 
synchronization during the summer 
seasons with a 3 to 4 weeks delay to 
precipitation events (Wang et al., 2003). 
The rainfall accumulated in the 
spring-summer period matters most to 
the vegetation growth during that year 
(Jargalsaikhan, 2013). And because 
NDVI in Mongolia usually peaks in 
August, subtracting the response delay, 
we use the maximum NDVI in the year 
and the sum-up value of GSMaP from 
April to July to conduct the correlation 
analysis, as suggested by other 
researchers mentioned in the 
Introduction (Ding et al., 2007). 
To help understand the collection of 
20-year data, we also computed the 

mathematical mean of NDVI and rainfall 
to explore the pattern behind those two 
data further. We conducted a geospatial 
correlation analysis between NDVI and 
Precipitation Mean. If our hypothesis 
holds, those two values display a high 
correlation because a higher amount of 
rainfall would always lead to higher 
vegetation growth. Another geospatial 
correlation we did is between NDVI 
Mean and the Correlation value for 
Growth Abnormality. Should there be 
any meaningful positive or negative 
correlation value, we can conclude that 
anthropogenic activities impact unevenly 
to sparsely or densely vegetated regions. 
 
2.2.2 Processing population density 

and LULC data 
And for processing population 

density data (LandScan), the 20 years of 
annual records were compressed into a 
single layer of mean value to represent 
the traces of human activities in 
Mongolia. Because our research focuses 
on the general vegetation growth of the 
grassland, we added two additional data 
preprocessing and analyzing procedures: 
First, we did a 99th percentile filtration of 
LandScan results. There is 30% 
population in Mongolia conducting 
herding activities covering around 60% 
of the land in Mongolia, yielding an 
average population density of about one 
person per square kilometer. Adding the 
consideration of small herders’ towns, 
the authors consider the 99th percentile 
value of 3.8 people per square kilometer 
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very fitting. 
 

Second, one of Mongolia's core 
ecological and environmental concerns is 
its grassland's sustainability. Using 
MODIS LULC data, we exclusively 
investigated the 20-year change in 
grassland expansion, average biomass, 
and precipitation change with the 
additional information from our 

Abnormality analysis results. 2001, 2005, 
2010, 2015, and 2020 were selected and 
sampled for discussion. 

 
Due to the data-acquiring pipeline, 

all data were organized in Geographic 
Coordinate System. Thus, any 
calculations based on areas were not 
available. Only ratio and average 
densities were presented.  

 
2.3 Data Table and Technicality Workflow 

Table 2.1 Data used in this study. 

Data Source Temporal 

Coverage 

Original Resolution 

Population Density  
(LandScan Global) 

ORNL 2001 ~ 2020 
30 Arc Second 

(~1KM.), Yearly 

NDVI (MODIS 
MOD13A3 2001~2019 

MOD13A2 2020) 

NASA – LP 
DAAC 

2001 ~ 2020 1 KM., Monthly 

LULC (MODIS 
MCD12Q1) 

NASA – LP 
DAAC 

2001 ~ 2020 500 M., Yearly 

Precipitation (GSMaP) JAXA 2001 ~ 2020 
0.1 Degree 

Longitude/Latitude, 
Monthly 

Waterbody, national 
parks, and forest 

MN EIC - Vector file (.SHP) 

 
M.: Meters, KM.: Kilometers, MODIS: 
The Terra and Aqua combined Moderate 
Resolution Imaging Spectroradiometer, 
LULC: Land Use Land Cover, NDVI: 
Normalized Difference Vegetation Index, 

NASA – LP DAAC: NASA Land 
Processes Distributed Active Archive 
Center, GSMaP: Global Satellite 
Mapping of Precipitation, JAXA: Japan 
Aerospace Exploration Agency, MN 
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Gov.: Mongolian Government, MN EIC: 
The Mongolian Environmental 
Information Center, ORNL: Oak Ridge 
National Laboratory. 
 
Precipitation (GSMaP) Global Satellite 
Mapping of Precipitation (GSMaP) is a 
rainfall observation record based on 
several satellites by the Japan Space 
Agency (JAXA). We are using the 
GSMaP-Near Real-Time (NRT) v6 
dataset originally at a monthly interval 
from 2001 to 2020 at a resolution of 0.1 
Degree Longitude/Latitude (Kubota et al. 
2020). 
 
NDVI. The MODIS vegetation indices is 
a global data depicting vegetation 
canopy greenness generalizing 
information on leaf area, canopy 
structure, and chlorophyll. We chose this 
product for its comprehensive coverage, 
both temporarily and spatially. Study 
shows MODIS NDVI performs well with 
seasonal phenology (Huete et al., 2002). 
The specific data we used here is the 
Vegetation Indices Monthly L3 Global at 
a resolution of 1 KM. (MOD13A3 and 
MOD13A2) from 2001 to 2020 (Didan 
2015). 
 
LandScan Global. The LandScan 
program is an effort made by the US Oak 
Ridge National Laboratory to provide 
global population distribution data that 
reflect each country’s unique case and 
satellite data to disaggregate the census 
data into population density within 

associated borders annually (Rose et al., 
2021). Each pixel’s digital value 
represents the estimated number of 
people in that area under the 
consideration of a 24-hour day cycle at a 
geospatial resolution of 1 Sqr. KM. We 
collected the data from 2001 to 2020. 
 
LULC. The Terra and Aqua combined 
Moderate Resolution Imaging 
Spectroradiometer (MODIS) Land Cover 
Type (MCD12Q1) Version 6 data 
product (Friedl and Sulla-Menashe 2019) 
provides information on land cover types 
on a global scale from 2001 to 2020 at a 
resolution of 500 meters and yearly 
temporal intervals. The data we use 
implemented the International 
Geosphere-Biosphere Programme 
(IGBP) legend and class descriptions. 
 
Borders, natural parks, lakes, and 
forests. Due to the need to find control 
group samples and inherent problems 
with NDVI and our theoretical model 
discussed later in this section, we also 
collected administration border and land 
type data provided by The Mongolia 
Environmental Information Center("EIC 
GeoNetwork") in the format of vector 
data layer (.shp files). 
 

All data are acquired under 
Geographic Coordinate System in WGS 
1984 format. 
 
2.3.1 Preprocessing 
Clipping and Data Value Rectification. 
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All collected data underwent clipping 
against the Mongolian border, and data 
values were checked against QA layers 
and documents. 

 
For LandScan data, we are 

taking the average population density 
over the 20 years in the nomadic rural 
areas, so we did a 99th percentile filter to 
exclude large cities and towns. 

 
For Precipitation data, we 

applied bilinear resampling to match 
with NDVI data. 

 
For LULC data, we reclassified 

the data to simplify the class selection 
(Zhang et al., 2020) and selected IGBP 
type 6~11 as grassland. We later 
vectorized the selected pixels into points 
to extract values from other raster 
datasets.  
For NDVI data, it is checked with the 
following formula: 
𝑁𝐷𝑉𝐼!"#$%&%"' =
{	)*++	%&	),-./01222	3!	),-.452222	),-.∗2.2225	  (1) 
 
Stacking data from monthly to yearly. 
NDVI and precipitation data’s original 
temporal resolution is monthly, and we 
transformed them into yearly data for 
further calculation. The NDVI annual 
data was generated from the maximum 
value of a given year. According to 
existing research, yearly precipitation 
data was stacked by the total value from 
the growing season between April to July 
(Jargalsaikhan, 2013). The stacking 

operation is the usual mathematical 
summation following the formula: 
 𝑉𝑎𝑙𝑢𝑒8$9#:"' 	= 	∑ 𝑉𝑎𝑙𝑢𝑒$;

$<5 	 (2) 
where t is the time unit of the target time. 
 
Filtering of forests and lakes. The 
filtering mask was generated by 
subtracting vector data of forests and 
lakes from the Mongolia border vector 
file. NDVI, Precipitation, LULC, and 
Population Density datasets were 
filtered against this mask. 

 
2.3.2 Temporal Pearson Correlation 

– the Abnormality Index and 
accompanying calculation 

Correlation calculation. We use the 
maximum NDVI in the year and the 
sum-up value of Precipitation (GSMaP) 
from April to July to calculate the 
Temporal Pearson Correlation between 
those two factors over all of Mongolia 
between 2001 and 2020. 
 

The cutout for coefficients of 
meaningful correlation is at +0.3 and -0.3 
(Ratner, 2009). 
The calculations of Pearson Correlation 
follow the definition form: 

 𝜌=,? =
∑=?0∑"∑#$

AB∑=%0(∑")
%

$ CB∑?%0(∑#)
%

$ C
	 	 	 	 	 (3)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Exploratory data analysis. The mean, 
maximum, minimum, standard deviation, 
fifth percentile, first quantile, third 
quantile, 95th percentile, and skewness 
were calculated. Then we conducted 
geospatial correlation analysis by taking 
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pairs of pixels at the exact location 
across two layers as the input for 
calculation. We did the two pairs of 
geospatial correlations to explore the 
characteristics of the data and results, the 
postfix “-Mean” is the yearly mean:  

• NDVI-Mean vs. Correlation: We 
want to know if bare lands and 
bushy areas show the same level 
of abnormality. 

• NDVI-Mean vs. 
Precipitation-Mean: Reconfirm 
that precipitation is the limiting 
factor of vegetation growth in 
Mongolia. Should this 
assumption hold, there would be 
a significant positive correlation 
between those two layers. 

Grassland evaluation with the 
correlation results. The average 
biomass, precipitation, percentages of the 
abnormal growth area, and growth rate 
of the grassland were calculated in the 
years 2001, 2005, 2010, 2015, and 2020. 
Using the vectorized point data from 
LULC data, we can extract related NDVI, 
rainfall, and correlation value to tables 
and then put them into data processing 
software to get the results. 

 
Following a previous study 

(Sekiyama et al., 2015), the NDVI to 
Biomass transformation is in this 
formula: 
 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 247.3 × 𝑁𝐷𝑉𝐼 + 14.7 
(4) 
Biomass is in Tons per Sqr. KM. The 
average precipitation it takes to grow a 

unit density of biomass, referred to as the 
rainfall utility number, was also 
calculated and appended in the result 
table. 
 
2.3.3 Verification 
Verification with Temporal Point 
Sampling. First, we are conducting 
so-called temporal point sampling by 
picking up two sets of three points of 
records in the monthly data collection 
across all 20 years. 
l Site in Natural Parks with Positive 

Correlation between Precipitation 
and NDVI: This is our controlling 
group because natural parks can be 
viewed as places protected from 
human disturbances like mining or 
grazing. 

l Site Outside Parks with No 
Correlation between Precipitation 
and NDVI: This is our observing 
window for places potentially 
disrupted by human activities. 

 
Three points of each set would be 

averaged as the representation of each 
group, with related time-series charts 
drawn. Due to visualization limitations, 
the year 2020 monthly records were 
emitted. 

  
Verification with Visual Interpretation. 
Then, using Google Earth, we selected 
three investigation areas covering the 
East, Central, and South regions to find 
visual evidence of potential disruptions 
from human settlement footprints. 
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Verification with LandScan Data. After 
filtration of the 99th percentile value in 
LandScan data, the layers of LandScan 
and Correlation were put into scatter plot 
and regression analysis.  
 

All the work is done with the software 
and tools listed below: 
ArcGIS(Version 10.7.1), System for 
Automated Geoscientific Analyses 
(SAGA), Jupyter (Kluyver et al., 2016), 
PANDAS (McKinney 2010), and 
Matplotlib (Hunter 2007). 

 
3. Results 
3.1 Growth Abnormality: NDVI-Precipitation Correlations and Exploratory 

Data Analysis 

 
Figure 3.1 The Temporal Pearson Coefficients between NDVI and Precipitation from 
2001 to 2020, the cutout is 0.3 and -0.3. The positive correlation is considered normal 

in vegetation growth, whereas other groups are deemed abnormal. 
 

From our cutouts of the 
correlation described previously, places 
with higher than 0.3 values are deemed 
normal growth areas. All the pixels 
counted as "positive relationships" can 
be observed across the correlation map in 
figure 3.1. Other pixels not displaying 
meaningful correlations even have 
negative correlations that appear to form 
a belt area from upper West to Central. 

The bulging eastern corner is also 
harboring large regions in abnormal 
conditions. This map is produced based 
on the continuous correlation value map 
(Figure A2) to alleviate readers’ burden. 
Please refer to the Appendix if you are 
interested to know the whole range of 
temporal NDVI-Precipitation correlation 
values in Mongolia. 
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Table 3.1 Quantiles and Descriptive Statistics of NDVI-Precipitation Correlation 

Minimum -0.811 95-th percentile  0.654 

5-th percentile -0.015 Maximum  0.931 

Q1  0.190 Standard deviation  0.204 

Median  0.331 Mean  0.327 

Q3  0.475 Skewness -0.223 

 
The descriptive statistics in table 

3.1 show a -0.223 negative skewness to 
the left, which means most pixels are 
prone to be positive. The fifth percentile 
is -0.015, which means we can infer that 
only a tiny area of Mongolia displayed a 
negative relationship between NDVI and 

precipitation. Moreover, the 3rd Quartile 
is 0.475, and the 95th percentile is 0.654 
with a median value of 0.331, so there is 
a large amount (roughly half of all pixels) 
of places displaying a somewhat good 
correlation between Rainfall and NDVI.  

 
Table 3.2 Geospatial Correlation Between NDVI Mean, Growth Abnormality, and 

Precipitation Mean 

Data Pair NDVI-Mean vs. 

Precipitation-Mean 

NDVI-Mean vs. 

Abnormality 

Correlation Value 0.896 -0.223 

 
The significantly high positive 

correlation between NDVI Mean and 
Precipitation Mean data in table 3.2 
indicates that vegetation flourishes in 
places of high rainfalls in the growing 
season of Spring to Summer, which 
confirms this research’s assumption that 
rainfall is a critically limiting factor of 

vegetation growth in Mongolia. The 
weakly significant negative value 
between NDVI-Mean and the 
Abnormality Map indicates that places 
with higher vegetated areas manifest 
more disturbances and abnormalities in 
flora growth. 

 
3.2 Grassland Changes 2001 to 2020 
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Figure 3.2 LULC of Mongolia in 2020 

 
Table 3.3 Mongolia Grassland Related Yearly Change Data 

Year 2001 2005 2010 2015 2020 
Grassland Area Growth1 - 0.37% 1.81% 3.05% 4.69% 

The ratio of Abnormal Region 51.48% 51.30% 51.29% 50.91% 50.89% 

Average Biomass in Abnormal 
Region (Metric Ton per Sqr. KM) 

120 124 126 128 141 

Average Biomass in Normal Region 
(Metric Ton per Sqr. KM) 

111 116 116 119 129 

Average Precipitation in Abnormal 
Region (unit: mm) 

215 222 161 274 295 

Average Precipitation in Normal 
Region (unit: mm) 

183 200 147 227 269 

Precipitation/Per Biomass Density in 
Abnormal Region (Unit mm/Ton per 

Sqr. KM) 
1.778 1.784 1.268 2.131 2.086 

Precipitation/Per Biomass Density in 
Normal Region (Unit mm/Ton per 

Sqr. KM) 
1.636 1.714 1.257 1.897 2.072 

1Year 2001 as the base. 
Figure 3.2 Land Use Land Cover 

(LULC) map of Mongolia in 2020 gives 
us the current distribution of land classes 
and the general combination of terrain 
and climates. This is for general 

reference. As for records of 2001, 2005, 
2010, and 2015 LULC, please reference 
figure A1 in the appendix. From figure 
3.2, we can see that the desert resides in 
the dry Gobi South and West. The rest of 
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the country is grassland, with a handful 
of forests in the Central Northern region. 
Over the twenty years from 2001, the 
area of grassland has extended by around 
4.69%, according to the MODIS LULC 
data in table 3.3. The ratio of the area 
deemed as abnormal vegetation growth 
is about the same over the 20 years. 
From the average biomass data, we can 
see overall that the grassland is getting 
greener over the years, which is 
explained by the rising average 
precipitation. However, rainfall and 
biomass are lower in the NORMAL 
region, similar to the geospatial 
correlation results between NDVI Mean 
and Abnormality we discovered in 
section 3.1. The Precipitation/Per 
Biomass Density is our calculation of, on 
average, how much precipitation it takes 
to grow a unit density of biomass in 
grassland. We later reference this result 
as the rainfall utility number. 
 
3.3 Verification 

Our three-step progressive 
verification process is explained in the 
method section. First, in the resulting 
group (a), we find that a good correlation 
level from our calculation stands for 
NDVI’s good seasonal and yearly 
response to changes in precipitation, 
especially compared with the no 
correlation non-park site that is 
considered disturbed by non-climatic 
factors. Unlike the saw-like shape of the 
control group figure 3.3 (a)-(2) NDVI 

line, the No Correlation site shows a 
weird “flat-roof” NDVI line despite the 
changes in precipitation. 

 
Then, in results group (b), we find 

visual cues of human presence in places 
marked as No Correlation or Negative 
Correlation between NDVI and 
Precipitation from Google Earth.  
The Coordinates of those five sites are: 

1. 43°35'17.86" N 103°51'48.77" E 

2. 48°17'41.09" N   93°36'42.06" E 

3. 47°03'08.00" N 116°19'16.79" E 

4. 47°11'12.65" N 109°11'47.38" E   

5. 42°45'27.88" N   98°48'50.74" E   

And for result in (c), with increasing 
population density, the Correlation 
Values are converging towards the No 
Correlation cutouts with the linear 
regression of 
𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛	 = 	0.330

− 0.008	 × 	𝐿𝑎𝑛𝑑𝑆𝑐𝑎𝑛 
With R2 = 0.07%, we can conclude that 
our model’s result: 

• Captures the abnormal response 
of NDVI to precipitation 
changes. 

• Where human presence can be 
spotted. 

• And the abnormality is linked to 
increases in human population 
density.
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Figure 3.3 Results from the verification process. The map in the middle marked out the 
location of the sampling sites with related numbering on both the charts/images and the 
map of Abnormality in the middle. (a) The monthly precipitation and NDVI records of 
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sample sites in Natural Parks with Positive Correlation level (1) and Non-park No 
Correlation sample site (2), Precipitation is drawn in the bar chart, and the green line is 
the NDVI in the monthly charts, the figures are capped at 200 mm for Precipitation; (b) 

Three photo of residential/production sites (3) (4) (5) on the abnormal region in the 
map; (c) Scatterplot with density coloring and Linear Regression between the 

Abnormality Correlation Value and Population Density, the liner regression is marked 
with a red line and printed in the graph. 

4. Discussion 
4.1 The Causal Relationship and the 

Abnormality Map Evaluation 
It is a known fact that correlation 

does not equate to causality. However, in 
our case of precipitation and vegetation 
growth, it is a biological fact that 
precipitation is the defining factor in 
vegetation growth, as in all living 
creatures on this planet. The geospatial 
correlation between NDVI-Mean and 
Precipitation-Mean in table 3.2 is 
conclusive proof of this claim. With a 
high 0.896 value in correlation, this is 
quantitative evidence that vegetation 
growth follows rainfall’s footsteps in 
Mongolia despite possible differences in 
altitude. This indicates that places with 
high precipitation values also see high 
vegetation coverage. With the causal 
relationship understood, simple 
correlation analysis can be used to 
distinguish between disrupted and 
undisrupted vegetated areas. 

 
For the NDVI-Precipitation 

Temporal Pearson Correlations in figure 
3.1, the pixels categorized as meaningful 
positive or negative groups are not that 

high in the Temporal Pearson Correlation 
scale. Half of the pixels display no 
correlation between vegetation growth 
and rainfall, indicating third-party 
interference during the research period. 
And we interpreted that observed 
vegetation growth responded better in 
the South, but it does not mean 
vegetation grows better in such cases. 
Our geospatial correlation analysis 
shows a negative correlation between 
NDVI-Mean and Abnormality in table 
3.2. It means a place with a higher 
average NDVI value would be more 
likely to see a lower NDVI-Precipitation 
correlation value, indicating a tendency 
of disrupted vegetation growth. Then this 
number tells us that in Mongolia, places 
with higher vegetation coverage are 
more fitting for grazing and are the 
places receiving negative impacts on 
vegetation growth. Given the agricultural 
landscape of Mongolia, it is most likely 
human activities, especially the animal 
husbandry industry. This is excellent 
evidence that anthropogenic activities 
like grazing are putting heavy stress on 
the local environment. 
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Another vital point of the model 
result is that the distribution of 
abnormality is a historical evaluation, 
which means that places marked as 
anomalies might not be as damaged in 
the current year, so the analysis is a 
retrospective review under the 20 years 
timeframe. The meaningful/insignificant 
correlation line cutout values of 0.3 and 
-0.3 are of empirical convenience, so 
places deemed as normal or positive 
relationships are not free from 
disruptions like harvesting or grazing; 
they are simply different in degrees of 
disturbances. This critical insight is 
stressed in the background of exploding 
number of livestock from 2001 to 2020 
and our analysis in the following 
subsection. 
 
4.2 Grassland Changes 

Over the years, from 2001 to 2020, 
there has been a slight expansion of 
grassland in Mongolia by around 5 
percent in table 3.3. This increase is 
likely contributed by the retreat of desert 
in the South, as indicated by our 20 years 
of MODIS LULC data of Mongolia (See 
Appendix Table A1). With the growing 
size of the grassland, percentages of 
being abnormal have dropped slightly, 
which might come from those newly 
reclaimed land from the desert by the 
advancing grassland. 

 
The data table 3.3 shows that the 

average biomass density increases with 
precipitation. So we can assume the 

increased rainfall is why the grassland 
areas and biomass density are growing. 
However, biomass density and 
precipitation are higher in the category of 
abnormal growth region than the usual 
places. This can be interpreted as the 
more vegetated areas would be in the 
priorities to graze upon. Though the 
precipitation is increasing in our records, 
this seems still surprising to see the 
average biomass density increasing, 
given an almost three-time increase in 
the total number of livestock in the past 
twenty years (“Livestock,” NSO of 
Mongolia). One explanation of our data 
is summarized in the data table of section 
3.2 as the rainfall utility number.  

 
The rainfall utility data tells the 

average precipitation it takes to grow a 
unit of biomass in the grassland. We can 
see that places in the abnormal region 
always carry more water to produce a 
unit of grassland biomass. This tells us 
that there should be more biomass in the 
natural environment if there are not so 
many disturbances or grazing activities. 
And we can see that with more 
precipitation and higher biomass density, 
it takes more rainwater to grow a unit of 
grassland biomass in both abnormal and 
normal regions. Given the exploded 
number of livestock mentioned in section 
1.1 background, we can view this as 
evidence that grazing activities are 
intensifying.  

 
The author is happy to see the actual 
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increase in vegetation coverage in 
Mongolia despite the ever-higher 
burdens of added livestock. We argue 
that the rise of precipitation would be a 
good chance to lower grazing intensity to 
let the grassland recover in Mongolia for 
future sustainable development. 
 
4.3 Verification Evaluation 

Though other researchers and 
institutions’ research and statistical data 
show that our abnormality map has a 
resemblance to cattle distribution, land 
type, and land degradation (Meng et al., 
2020; Liu et al., 2013; “Desertification 
and Land degradation in Mongolia,” 
NEASPEC), we hope to have our 
quantitative discussion. 

 
Mongolia's vastness and the COVID 

pandemic's impact put a high bar against 
large-scale ground investigations. And 
one of the research referenced by this 
paper lacks a control group (Sekiyama et 
al., 2015). To overcome the 
shortcomings, we took two assumptions: 
population density in the rural area 
would link to nomadic production; two, 
places within the natural park are 
well-protected from human disturbances 
by the law and can be used as a 
substitute for control groups. So, the first 
step of verifying our model is to check 
the monthly records to be sure the 
correlation levels are a good indicator of 
the abnormal relationship between NDVI 
and precipitation.  

 

With Temporal Point Sampling in 
figure 3.3 group (a), we can see that: 
The no correlation group showed a 
characteristic " flat-roof " phenomenon 
meaning the vegetation growth did not 
respond well to the changes in 
precipitation during the year, forming a 
flatline over changing precipitation 
numbers. We think the reason can be 
either the rainfall is too small to make an 
impact, the vegetation was grazed 
constantly to a low biomass number or 
the result of irrigation. The NDVI’s 
responses to precipitation are much more 
apparent in the Park Positive group to a 
more iconic seasonal curve. Differences 
in year-by-year precipitation events also 
lead to higher NDVI values in this group. 
This confirms that our model’s results 
are a good indicator for regular and 
irregular NDVI-Precipitation 
relationships. 
 

For step two, in the (b) group of 
figure 3.3, we successfully located 
visually human presence via Google 
Earth. We are linking the abnormal 
relationship between NDVI and rainfall 
to human existence. But this is necessary 
but not sufficient evidence, and we need 
national-level confirmation. 

 
The Population Density 

(LandScan) – Abnormality scatters plot 
shows that with population density 
increase, the respective 
NDVI-Precipitation correlation value 
would converge negatively below 0.3 in 
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figure 3.3 group (c). And the regressed 
line also indicates this trend. The author's 
interpretation is that increased population 
density leads to more nomadic activities, 
which disturbs the area’s vegetation 
growth and leads to a lower correlation 
value between precipitation and NDVI. 
This negative regression line verified the 
effectiveness of our model and results. 
We do notice low R-squared values. The 
reason for that could be the caveats in 
LandScan itself. The data is 
disaggregated from census data into 
density distribution by remote sensing 
data and other GIS information like road 
networks. The data does not directly 
represent the population residing in the 
wilderness of Mongolia. 
 
4.4 Methods Discussion, Limitations, 

and Next Steps 
Compared with previous research on 

vegetation growth response to climatic 
factors in Mongolia (Sekiyama et al., 
2015; Jargalsaikhan, 2013), this research 
extends the geospatial and temporal 
scales. By selecting the time window of 
the first two decades, we made our 
results more closely related to the current 
situation. The observation is beyond the 
North-South single direction by covering 
the whole country, leading to insights 
covering the changes in East-West and 
North-South directions.  

 
Our research also jumped out of the 

traditional comparison research that only 
tells the increase or decrease of 

vegetation growth, ignoring the 
underlying impact of anthropogenic 
activities. Like in section 4.3, we 
successfully uncovered that beneath the 
increased greenness due to a higher level 
of precipitation, the utility value of rain 
in biomass and our Vegetation Growth 
Abnormality map revealed the burdens 
and wasted recovering potential by an 
ever-increasing number of livestock from 
2001 to 2020. 

 
Yet there are several limitations the 
authors like to address. First, we would 
like to talk about our study's confidence 
level. All the data involved in the 
calculation, discussion, and verification 
have their range of quality assurance. 
Our interpretation of the correlation 
results is limited by the data collected. 
The [-0.3, 0.3] cutout in correlation 
values is an empirical attempt to draw 
the threshold of “meaningful correlation.” 
There is still much to debate about the 
fitting cutouts because we are using 20 
pairs of two decades of annual data. The 
temporal correlation analysis could 
potentially be more representative if we 
are using seasonal or bi-monthly data 
points. This would require careful 
investigation in our next research steps. 
Should we have ground truth concerning 
accurate human footprint, e.g., nomadic 
tent house distribution, caveats from data 
like LandScan can be circumvented, 
increasing our confidence in the results. 
Producing such a dataset is the authors’ 
goal for future efforts. 
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Moreover, temporal point 

sampling is the authors' attempt to gain 
insight into the 20-year-long time-series 
data; the observation is severely limited 
by the selected samples' number and 
distribution. It is challenging to balance 
the cost of sampling and the 
representative strength of the samples. 
The authors are confident that we can 
further strengthen the discussion by a 
more substantial number of more evenly 
distributed samples selection with added 
ground truth data like yearly nomadic 
tent house distribution collection in 
future research. 
 
5. Conclusion 

To investigate the sustainability 
and stability of the natural environment, 
especially grassland in Mongolia, the 
authors propose a method of using 
NDVI’s response to precipitation across 
yearly data collection to measure the 
abnormality of vegetation growth 
potentially caused by human 
disturbances (most likely, grazing). We 
calculated the Vegetation Growth 
Abnormality map from the Temporal 
Pearson Correlation Value between 
NDVI and Precipitation data in 
Mongolia from 2001 to 2020. Then we 
factored in MODIS LULC data to 
calculate the grassland’s growth rate, the 
ratio of abnormal vegetation growth, 
average historical precipitation, and 
biomass density in Mongolia during the 
same period. Finally, we finished the 

verification discussion with sampling in 
monthly records, aerial photo inspection, 
and population density data. 

  
We found that the mean and 

median values of NDVI-Precipitation in 
Mongolia from 2001 to 2020 are 0.327 
and 0.331, with a standard deviation of 
0.204. Grassland has grown 4.69% in the 
twenty years with increased biomass 
density and average precipitation. About 
51% of grassland is deemed abnormal in 
vegetation growth, possessing a higher 
biomass density and moderate rainfall 
than the other normal half. Besides 
visual confirmation of human presence 
in regions classified as Abnormal 
Vegetation Growth regions, we have a 
negative linear regression between 
population density and 
NDVI-Precipitation Correlation Value of  
Correlation = 0.330-0.008 × LandScan, 
linking low correlation value to higher 
population density and intensified 
anthropogenic activities behind such 
numbers. 
 

The authors conclude that 
negative third-party influences like 
grazing are widespread because around 
half of the pixels in the correlation map 
and grassland show abnormal 
relationships between precipitation and 
NDVI. The precipitation/biomass ratios 
in both normal and abnormal growth 
regions in grassland are growing, hinting 
that a higher portion of growth potential 
is consumed; the explosion of livestock 
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numbers in Mongolia did put heavy 
stress on the local environment in the 
first two decades of the 21st century 
even though NDVI data suggest 
Mongolia is getting greener.  

 
The authors are looking forward 

to incorporating additional datasets and 
methods to directly count grazing costs 
to the local environment geospatially in 
our future research. One of the directions 
is nomadic tent house detection and 
location research. 
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Appendix 
  

  

  
 

Figure A1. MODIS LULC map of Mongolia in 2001(upper left), 2005(upper right), 
2010(lower left), and 2015(lower right). 

 
Table A1. Pixel count for MODIS LULC of Mongolia 2001-2020. 

Year Forest Grassland Farmland Urban built-up Desert Waterbody 
2001 73810 7090715 1930 6886 3385678 87047 
2002 73326 7113631 2000 6886 3363438 86785 
2003 71450 7136473 1918 6886 3342688 86651 
2004 71223 7130339 1965 6888 3349499 86152 
2005 69848 7117064 2050 6889 3364420 85795 
2006 66755 7120426 2039 6889 3364515 85442 
2007 66038 7133608 1918 6893 3352462 85147 
2008 65167 7157281 2304 6894 3329530 84890 
2009 65398 7178806 2561 6898 3307656 84747 
2010 74245 7204335 2664 6898 3273439 84485 
2011 77592 7230744 2338 6901 3244033 84458 
2012 80805 7251330 2188 6902 3220385 84456 
2013 91938 7250752 2260 6902 3209473 84741 
2014 93901 7252606 2693 6902 3205272 84692 
2015 99689 7261931 3350 6903 3189439 84754 
2016 107767 7267362 3817 6903 3175185 85032 
2017 102114 7255293 2959 6905 3178854 99941 
2018 94742 7332308 2765 6911 3124827 84513 
2019 87039 7389746 2365 6911 3075704 84301 
2020 93403 7371140 1905 6917 3088392 84309 

 
Table A2. Spectral Bands of the MODIS NDVI products used in this paper. 

Band Units Bit type Fill Valid Range Scale 
Band 1 Red Reflectance 16-bit signed integer -1000 0, 10000 0.0001 
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Band 2 Near-infrared Reflectance 16-bit signed integer -1000 0, 10000 0.0001 
Band 3 Blue Reflectance 16-bit signed integer -1000 0, 10000 0.0001 

Band 4 Mid-infrared Reflectance 16-bit signed integer -1000 0, 10000 0.0001 

 
 

 Figure A2. The Temporal Pearson Coefficients between NDVI and Precipitation from 
2001 to 2020 in float point format. 

 


